FalconWing: An Open-Source Platform for Ultra-Light Fixed-Wing Aircraft Research

Our 150g fixed-wing can autonomusly land using only vision, without IMU or motion capture.

Abstract

We present FalconWing – an open-source, ultra-lightweight (150 g) fixed-wing platform for autonomy research. The hardware platform integrates a small camera, a standard airframe, offboard computation, and radio communication for manual overrides. We demonstrate FalconWing’s capabilities by developing and deploying a purely vision-based control policy for autonomous landing (without IMU or motion capture) using a novel real-to-sim-to-real learning approach. Our learning approach (1) constructs a photorealistic simulation environment via 3D Gaussian splatting trained on real-world images; (2) identifies nonlinear dynamics from vision-estimated real-flight data; and (3) trains a multi-modal Vision Transformer (ViT) policy through simulation-only imitation learning. The ViT architecture fuses single RGB image with the history of control actions via self-attention, preserving temporal context while maintaining real-time 20 Hz inference. When deployed zero-shot on the hardware platform, this policy achieves an 80% success rate in vision-based autonomous landings. Together with the hardware specifications, we also open-source the system dynamics, the software for photorealistic simulator and the learning approach.

Publication
Gaussian Representations for Robot Autonomy at RSS 2025
Yan Miao
Yan Miao
Ph.D. Candidate in Computer Engineering

My research interests include autonomous system design and vision-based control.