
© 2024 Yan Miao

SAFE AUTONOMY: CONTINUOUS TESTING AND
CONTROLLER COMPENSATION FOR UNRELIABLE PERCEPTION

BY

YAN MIAO

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2024

Urbana, Illinois

Advisor:

Professor Sayan Mitra

Abstract

This thesis addresses two key challenges in designing safe and reliable Autonomous Vehicles

(AVs): evaluating the performance of vehicle controllers across different scenarios and

designing safe vehicle controllers that can manage unreliable perception.

Testing is essential for AVs as it helps identify potential flaws in controllers that could

lead to unsafe actions, and it assists designers in debugging. However, testing is a complex

process that involves integrating resources like simulators and various modules, including

controllers and perception systems, which is often a cumbersome task. To simplify this, we

propose a continuous testing pipeline that automates the evaluation of controllers in diverse

simulation environments and provides developers with feedback to continuously improve

their controllers. Our continuous testing pipeline has supported over 100 student developers

from various universities, enabling them to test their controllers automatically.

Designing controllers with learning-based perception is also crucial, given the popularity of

learning-based perception for its scalability. Nevertheless, many existing controller synthesis

algorithms assume perfect perception, overlooking the fact that perception can be unreliable

and that perception errors can lead to unsafe control actions. To address this, we introduce a

two-step approach: an offline phase that identifies perception uncertainties using a preimage

perception contract, followed by the real-time implementation of a risk heuristic to ensure

safe control. Our simulations, conducted in various adaptive cruise control scenarios across

different tracks and weather, have demonstrated the effectiveness of this strategy, resulting

in a 73% reduction in safety violations such as collisions and lane departures caused by

unreliable perception.

ii

To my parents and friends for their love and support.

iii

Acknowledgments

This thesis could not have been realized without the support and encouragement from

numerous individuals. Foremost, I extend my deepest gratitude to my advisor, Prof. Sayan

Mitra, who has been both a mentor and a friend over the past two years. His wisdom and

critical approach to research problems, coupled with his exemplary leadership in guiding our

research group, have been invaluable to my growth.

Additionally, I owe a debt of gratitude to my parents, Beibei Zeng and Yajun Miao, for

their unwavering financial and emotional support throughout my journey in higher education.

Their backing has been the cornerstone of my achievements.

I am also thankful to my colleagues Yangge Li, Dawei Sun, Kristina Miller, and Ben

Yang, for enriching my research and meaningful research discussions.

I’m thankful for my friends, Yuwei Pan, Yurui Cao, and Hellan Lee, for making my time

in Champaign enjoyable and rewarding. Their friendship has been a source of joy and has

provided intellectual stimulation outside of the academic sphere.

Lastly, special thanks to my girlfriend, Jiawei Song, for her constant companionship and

encouragement through the challenging times. Her support has been a beacon of hope and

strength.

iv

Table of contents

List of Abbreviations . vi

Chapter 1 Architecture of Autonomous Vehicles & Design Challenges . . . 1
1.1 Software Elements . 2
1.2 Technical Challenges: Safety & Reliability . 4
1.3 Thesis Contribution: Continuous Testing & Controller Compensation 5

Chapter 2 Continuous Testing Pipeline for Autonomous Vehicles 7
2.1 Design & Testing Techniques . 7
2.2 Design Choices of Continuous Testing Pipeline 10
2.3 Applications in Testing & Verification . 15
2.4 User Experience . 22
2.5 Summary . 23

Chapter 3 Controller Compensation for Unreliable Perception 24
3.1 Overview on Perception Contract Methodology 25
3.2 Related Work on Controller Design with Imperfect Perception 28
3.3 Control compensation Problem . 29
3.4 Preimage of Perception Contract for Safe Control 33
3.5 Case Study: Adaptive Cruising Control . 39
3.6 Summary . 46

Chapter 4 Conclusions . 48
4.1 Future Work . 48

References . 50

v

List of Abbreviations

AV Autonomous Vehicle.

DL Decision Logic.

GRAIC Generalized Racing Intelligence Competition

ML Machine Learning.

NN Neural Network.

BNN Bayesian Neural Network.

CNN Convolutional Neural Network.

ACC Autonomous Cruising Control.

PC Perception Contracct.

PPC Preimage Perception Contract.

vi

Chapter 1

Architecture of Autonomous

Vehicles & Design Challenges

The design of Autonomous Vehicles (AVs) has attracted significant attention in both academic

research and industry development, driven by their potential to revolutionize transportation,

enhance safety, and improve efficiency. Waymo, a leading company specializing in L4-level

autonomous vehicles, has successfully launched hundreds of unmanned taxis across two major

cities (as shown in Figure 1.1), San Francisco and Phoenix, and reported an 85% reduction

in crash rates involving injuries compared to human driving benchmarks [1]. Another study

by the Center for Sustainable Systems at the University of Michigan emphasizes that AVs,

when integrated with AI technologies, are expected to reduce vehicular crashes caused by

human error by 90%, potentially saving approximately $190 billion annually [2]. Additionally,

research suggested that AI algorithms assist AVs in enhancing eco-driving practices, reducing

energy consumption by up to 20% [3], and are also believed to increase passenger comfort by

minimizing sudden maneuvers, such as harsh acceleration [4].

The advancement of AVs is supported by a broad array of State-of-the-Art Artificial

Intelligence (AI) software elements.

1

Figure 1.1: Waymo simulation uses sensors, including cameras and LiDARs, to reconstruct the
environment. This below figure shows the view captured by the camera while the above figure
depicts the reconstructed environment, with detected humans and vehicles denoted in blue, the
crosswalk in white, and the planned trajectory shown in green.

1.1 Software Elements

This section introduces various elements employed in the software design of AVs, which

generally encompasses perception, planning, and control components, as illustrated in Figure

1.2.

The perception module leverages raw data from sensors, such as cameras and LiDARs, to

interpret the environment, which involves estimating lane positions and the relative pose of

obstacles from raw image arrays and point cloud data. The planning module then uses this

data to devise a safe and viable trajectory. Subsequently, the control module determines the

necessary maneuvers, including throttle, brake, and steering inputs, based on the planned

trajectory.

Figure 1.2: The Autonomous Vehicle Design Pipeline

2

https://waymo.community/about/simulation.html

1.1.1 Perception Module

The perception module is critical as it forms the foundation for planning and control.

Inaccuracies in perception can propagate errors, leading to unsafe scenarios. Modern

perception modules in AVs typically utilize Machine Learning (ML) due to their scalability

and rapid inference capabilities.

YOLO (You Only Look Once) [5], a widely used object detection system, efficiently

estimates bounding boxes for traffic signs, pedestrians, and vehicles. YOLO processes object

detection as a single regression problem, converting image pixels directly into bounding box

coordinates and class probabilities. This efficiency is crucial for real-time applications in

AVs. LaneNet [6], designed for lane detection, employs a deep neural network, specifically

a U-Net architecture, to accurately identify lane markings under various conditions. The

combination of semantic and instance segmentation enables LaneNet to effectively handle

complex driving scenarios.

In addition to single-frame detection algorithms, tracking algorithms such as DaSiamRPN

[7] and Deep SORT [8] are essential for maintaining object consistency across frames. These

algorithms ensure that even if an object is temporarily obscured, it can still be accurately

tracked, enhancing the reliability of the perception module.

Moreover, libraries like OpenCV [9] facilitate the integration of complex perception algo-

rithms into the autonomous vehicle ecosystem, supporting the development and optimization

of these systems.

1.1.2 Planner Module

The planner module for autonomous vehicles is crucial for navigating complex environments

safely and efficiently. It can be broadly categorized into three types: sampling-based planners,

graph-based planners, and optimization-based planners, each with distinct methodologies

and applications.

Sampling-based planners, such as RRT ∗ [10], excel in navigating areas dense with

obstacles by iteratively refining the path to the goal. Graph-based planners, like Hybrid

3

A∗ [11], consider the vehicle’s dynamics, offering paths that are not only short but also

navigable. The Frenet Optimal Trajectory Planner [12] represents the vehicle’s position in

terms of lateral and longitudinaldistances from a reference path or lane centerline, evaluates

multiple paths against a cost function, and selects the most optimal path, ensuring safety,

legality, comfort, and efficiency in navigation.

Furthermore, existing libraries (for example, pylot [13]) facilitate the integration of diverse

planning algorithms into the autonomous vehicle development pipeline, thereby broadening

the capabilities of AV systems.

1.1.3 Controller Design

Controller design in autonomous vehicles focuses on precision in following planned paths

while maximizing passenger comfort and safety.

PID controllers [14], fundamental yet highly effective, adjust the vehicle’s steering and

throttle based on the deviation from the desired path. They utilize proportional, integral, and

derivative components to correct errors, offering a simple yet robust solution for trajectory

maintenance.

Pure Pursuit and the Stanley method [15] calculate the required steering angle to follow

the path, with adjustments based on vehicle speed and orientation, ensuring smooth path

tracking. Model Predictive Control (MPC) [16], a more advanced technique, predicts and

optimizes the vehicle’s trajectory, accounting for future states and dynamic constraints,

thereby offering a comprehensive solution for complex environments.

1.2 Technical Challenges: Safety & Reliability

Despite advancements in AI and ML technologies, safety challenges in AVs remain a significant

concern.

There are many different different driving scenarios due to variation in roads, weather

conditions, lighting, obstacles’ and the vehicle’s position. However, ensuring that AVs

remain safe under all scenarios is challenging. For instance, control algorithms may react

4

inadequately to scenarios where unexpected obstacles appear in road conditions. A notable

example from 2022 involved a Waymo Via truck operating in autonomous mode, which,

although not at fault, was forced off the road by another semi-truck with road rage [17].

This incident highlights the importance of comprehensive testing across diverse scenarios

because testing can reveal the vulnerability of AVs.

Furthermore, achieving flawless perception in AVs is a formidable challenge and is

susceptible to failures, especially under adverse weather conditions or in low light. These

misinterpretations can lead to unsafe maneuvers. For example, in October 2023, a Cruise

unmanned vehicle collided with and subsequently dragged a pedestrian in San Francisco

because its perception system failed to detect the pedestrian [18]. In another incident in 2020,

a Tesla mistook a Burger King sign for a stop sign, nearly causing the vehicle to stop on a

highway [19]. This unreliable perception underscores the urgent need to develop controllers

that can operate reliably even with uncertain perception data.

1.3 Thesis Contribution: Continuous Testing & Con-

troller Compensation

In this thesis, we try to focus on two aspects to help improve the safety of autonomous

vehicles: continuous testing and designing controller for unreliable perception.

In Chapter 2, we focus on the controller testing problem for AVs and develop an open-

source continuous testing pipeline. The key features include:

• It automatically evaluates controller designs across a multitude of scenarios.

• It iteratively provides testing feedback to guide developers to improve controllers.

• It comes with user-friendly code submission portal and leaderboard for displaying

results.

• It is used by over 100 student developers across different universities to test their

controllers.

5

In Chapter 3, we focus on the controller design problem with imperfect perception, and

proposed a runtime controller correction method. The key features are:

• It characterizes the perception uncertainties of the learning-based perception module.

• It synthesizes safe control action based on the perception uncertainty and a heuristic

function.

• Empirically it shows a 73% reduction in safety violations such as collisions and lane de-

partures caused by unreliable perception data in various Adaptive Cruise Control(ACC)

scenarios across different tracks and weather conditions.

6

Chapter 2

Continuous Testing Pipeline for

Autonomous Vehicles

In this Chapter, we are going to introduce the continuous testing pipeline, that specifically

test the controller component of the autonomous vehicle by assuming perfect perception.

Section 2.1 motivates the continuous testing problem and listed some related work.

Section 2.2 explain the detailed design choices of the continuous testing pipeline. Section 2.3

describes two different applications with our continuous testing pipeline. Section 2.4 shows

the user experience and feedback. Section 2.5 concludes the work.

2.1 Design & Testing Techniques

Testing of vehicle design has recently emerged as a critical research topic [20] due to the

importance of ensuring safety. This section explores existing related work on vehicle design

and testing techniques.

7

2.1.1 Planner & Controller Design

Significant progress has been made in controller synthesis algorithms, which focus on

developing safe control algorithms assuming perfect perception [21]–[25]. CommonRoad

provides a platform for researchers to evaluate and compare their motion planners [26].

Given the variety of controllers and planners available, effective testing is essential.

2.1.2 Testing through Falsification

Falsification research in vehicle systems aims to identify scenarios or conditions where a

vehicle’s control systems might fail, thus uncovering bugs in vehicle designs that could lead to

failures. Cho and Behl from the University of Virginia propose using reinforcement learning

(RL) to generate failure examples and unexpected traffic situations for edge-case testing

[27]. Jha from the University of Illinois presents DriveFI, a machine learning-based fault

injection engine designed to identify critical faults impacting AV safety [28]. Corso and Du

have introduced an adaptive stress testing method to find unavoidable failure scenarios by

solving a Markov decision process using reinforcement learning [29].

2.1.3 Field Testing

Field testing of autonomous vehicles involves conducting hardware experiments in specialized

facilities to evaluate system performance. Feng and colleagues at the University of Michigan

have developed an augmented reality-based testing platform, coupled with a scenario library

generation method, tested on an SAE Level-4 ADS vehicle at the M-City test facility [30].

Zhang and colleagues introduced a comprehensive evaluation methodology to assess the

performance of roadside perception systems using vehicles equipped with GPS-RTK at

Mcity [31]. However, hardware experiments can be time-consuming, risky, and influenced by

external factors such as weather and visibility.

8

2.1.4 Vehicle Simulator

Simulation compensates for some disadvantages of field testing, such as fewer hardware

constraints. The CARLA Simulator is an open-source platform that provides extensive

facilities for developing, training, and validating autonomous driving systems, including

sensor simulation and various urban scenarios [32]. Scenic, a domain-specific probabilistic

programming language, facilitates the design and testing of systems in autonomous vehicles

and robotics by allowing specifications of scenario distributions [33]. The F1-Tenth simulator

integrates the Robot Operating System (ROS) and the Gazebo simulator to test vehicle

algorithms in a competitive racing context [34]. However, setting up these simulators can

also be challenging as they often require advanced technical skills and resources, such as

powerful GPUs and knowledge about Linux.

2.1.5 Continuous Integration

Research involving Continuous Integration (CI) and continuous testing is crucial for advancing

the reliability and functionality of autonomous systems. Drake software highlights the

importance of automated unit testing in robotics for maintaining software quality [35]. Other

notable CI frameworks combine version control tools, like GitHub, with build tools, like

AWS, to automate testing upon new code commits [36]. However, many of these advanced

testing frameworks are not open-source, limiting their accessibility to the wider research

community.

Inspired by the innovative work previously mentioned, this thesis aims to implement a

continuous testing pipeline for controllers in simulation, assuming perfect perception. This

pipeline is designed to be user-friendly and quick in producing testing results, requiring

minimal technical knowledge. The next section will detail the construction of this continuous

testing pipeline.

9

2.2 Design Choices of Continuous Testing Pipeline

Our continuous testing pipeline is architecturally composed of three distinct servers: the

submission server, the testing server, and the output server, depicted in Figure 2.1. The

code setup and instructions on how to replicate the continuous testing pipeline with three

servers could be found at this Github repository.

Figure 2.1: Block diagram showing the flowchart of the code-level continuous testing pipeline. The
diagram highlight three main components: the submission server, the testing server, and the output
server. The controller submitted to the submission server by developers will be automatically trigger
the testing server for evaluation, and the output server will display the performance result on a
leaderboard website when the testing server finishes the testing process.

The submission server facilitates an interface for developers to upload their scripts to be

tested as well as some basic information. Following this, the testing server undertakes the

evaluation of the submitted scripts within varied simulation environments. Ultimately, the

output server is responsible for presenting the performance results of these evaluations on a

publicly accessible leaderboard website.

Our continuous testing pipeline primarily operates in the background, thereby alleviating

developers from the complexities of the testing process. Upon submitting their scripts via

the interface illustrated in Figure 2.2, developers can expect to receive email notifications

regarding their submissions in a matter of minutes, and they can also view their performance

metrics displayed on the leaderboard website, as depicted in Figure 2.3.

10

https://github.com/yanmiao2/continuous-testing/tree/main

Figure 2.2: The website interface for the submission server, where developers could submit the
controller script for evaluation

11

Figure 2.3: The leaderboard website with performance metric displayed as well as video log and
score.

12

2.2.1 Submission Server

The first stage of the automated testing pipeline is the submission server. The purpose of this

server is to provide a modern user interface for developers to easily submit their files, which

are then securely stored on a server and later retrieved by the testing server for processing.

The website interface, shown in Figure 2.2, facilitates file submission and can be accessed

here. Should this link become inactive, a cached snapshot of the website as of March 25,

2024, is available here.

Our website offers a straightforward platform where developers can submit their scripts

along with their email addresses. The front end uses HTML and Bootstrap CSS to ensure the

site is navigable and aesthetically pleasing on any device, from smartphones to desktop com-

puters. Bootstrap’s responsive design features help maintain alignment and responsiveness

without the need for extensive custom CSS.

The back end is powered by the Python Flask web framework, which serves dual purposes:

it renders the HTML page when someone visits the site (using a GET request) and processes

the data when a user submits a script along with their email address (using a POST request).

Upon submission, the Flask server securely stores the script, the email address, and a

timestamp on our server, maintaining a record of each submission.

Both the front end and the back end are hosted on the University of Illinois’ cPanel web

hosting service, ensuring that the site is reliable and can handle significant traffic without

requiring us to manage server infrastructure directly. The source code and a simple readme

to replicate the submission server setup can be found on our GitHub repository.

2.2.2 Testing Server

The testing server functions as the core component of our testing pipeline, specifically

designed to support a range of testing applications, such as GRAIC and Verse, which are

detailed further in Section 2.3. It operates by hosting a specialized script that continuously

monitors the submission server for new submissions. When a new submission is detected,

this script initiates the testing process by launching the simulation environment, loading the

13

https://graic2022submit.web.illinois.edu/graic2022
https://web.archive.org/web/20240325194924/https://graic2022submit.web.illinois.edu/graic2022
https://github.com/yanmiao2/continuous-testing/tree/main/submission-server

designated simulation scenarios, and executing the tests. Upon test completion, it generates

various outputs, including videos, images, HTML files, and score logs.

To efficiently manage these outputs, another script is triggered to automatically upload

the test results to Google Drive using the Google Cloud API, integrating cloud services to

enhance data storage and accessibility. Simultaneously, the MongoDB database is updated

with links to these results and the submitter’s email address using the MongoDB API.

Additionally, an automatically activated script employs the smtplib library to send

detailed test results via email to developers. This use of the smtplib library automates email

communications directly from Python scripts, providing developers with immediate feedback

on their submissions. This level of automation from submission to feedback ensures that the

entire process is seamless and requires no manual intervention, significantly enhancing the

user experience.

For more details about configuring the setup to accommodate inputs/outputs for different

simulations, please refer to Section 2.3.

2.2.3 Database & Leaderboard Website

The output server represents the final stage of our testing pipeline and plays a crucial role

by offering developers a comprehensive and accessible view of their performance through a

leaderboard website, accessible via this link.

This website converts the raw data logs from the testing server into a user-friendly format,

fostering competition and inspiration among developers. The architecture of the leaderboard

utilizes the MERN stack, primarily focusing on MongoDB, Express.js, and Node.js for our

implementation.

MongoDB, a NoSQL database, is selected for its ability to manage large volumes of

unstructured data efficiently and flexibly. It stores results updated by the testing server and

supports dynamic queries for retrieving the latest test outcomes. Express.js, a streamlined

Node.js web application framework, manages the rendering of the webpage. It processes

requests and dynamically serves the leaderboard content, ensuring the information is current

and accurate.

14

https://graic-2023.herokuapp.com/

The server-side content rendering uses EJS (Embedded JavaScript templates), enabling

HTML markup creation with plain JavaScript. This templating engine is crucial for handling

GET requests, fetching necessary data from MongoDB, and dynamically producing the

HTML content that users see on the website. This method allows for smooth integration of

database content into the webpage, providing a dynamic and interactive experience for users.

For hosting, we chose Heroku due to its robust integration with GitHub, which supports

continuous deployment and integration. Heroku’s platform not only simplifies development

but also accelerates the deployment process, allowing for quick updates and iterations.

Its scalability ensures the leaderboard website remains accessible, current, and capable of

managing data flow from our testing server efficiently.

2.3 Applications in Testing & Verification

As mentioned in the last section, the testing pipeline can be easily modified to different

testing applications. In this section, we are going to introduce the usage of the continuous

testing pipeline with two applications: a vehicle race called GRAIC [37] and a verification

framework called Verse [38].

2.3.1 Controller Testing with GRAIC

In this subsection, we will demonstrate how the continuous testing pipeline integrates with

the Generalized Racing Intelligence Competition (GRAIC) [37].

GRAIC utilizes the Carla simulator to provide a specialized environment for testing

vehicle controllers in racing scenarios, assuming perfect perception to focus solely on controller

performance. The competition offers a diverse array of tracks and obstacles, meticulously

crafted using RoadRunner for track creation and Scenario Runner for simulating obstacle

behaviors, as highlighted in Figures 2.4 and 2.5. A key feature of GRAIC is the provision of

a perception oracle, which supplies ground truth perception data, allowing participants to

concentrate on refining and testing their controller designs, as illustrated in Figure 2.6. The

primary challenge for participants is to develop a controller that can navigate all waypoints

15

https://www.mathworks.com/products/roadrunner.html
https://carla.readthedocs.io/projects/ros-bridge/en/latest/carla_ros_scenario_runner/

Figure 2.4: An example of the GRAIC Scenario. The blue box in front of the ego vehicle is the
waypoint it requires to reach. The two vehicles ahead are the dynamic obstacles that the ego vehicle
is expected to avoid. One controller design choice is to change to the left lane and overtake the
obstcales using the inside lane of the left turn ahead of the ego vehicle.

Figure 2.5: Six different tracks we have created using RoadRunner for GRAIC testing. Top row
has three relatively simple tracks with less turns. The bottom row shows three complicated tracks
with sharp turns. The left bottom one is a reconstruction of a real Formula One track – Shanghai
Audi International Circuit

16

Figure 2.6: This is the Input-Output interface of the controller. developers are given the ground
truth perception information, including the obstacles global location, ego vehicle’s global location
and velocity, reference trajectory to follow. And developers are expected to design controller logic
that output steering, throttle and brake based on the given perception information.

17

Figure 2.7: This is the Decision Logic interface provided to user. Input is the distance to the
pedestrian, represented with other.dist, the output DL should assign in output.agent mode. The
example DL is assigned the Brake mode when the ego vehicle is previously in the Normal driving
mode and the distance to the pedestrian is less than 12 meters.

as swiftly as possible while avoiding obstacles.

Within our continuous testing pipeline, GRAIC functions as the testing server, which

will generate a score that considers the time to finish the lap and the collision penalty. We

have customized the submission server to accept controller scripts in Python, as depicted in

Figure 2.2.

The output server has been adapted to accommodate GRAIC’s specific outputs. In

addition to displaying score metrics such as completion time and the number of collisions, it

also showcases videos of the simulation runs. This visual representation not only provides

insight into each participant’s controller performance but also adds an engaging element to

the competition. This allows both participants and observers to analyze and appreciate the

nuances of each controller’s performance. Alongside the publicly available leaderboard data,

detailed run logs are sent to developers in the form of Carla Recorder, providing further

insights into each controller’s behavior during the competition.

18

https://carla.readthedocs.io/en/latest/adv_recorder/

Figure 2.8: The blue tube is the pedestrian’s reachable sets, while the red tube is the ego vehicle’s
reachable sets under a certain DL; ”HIT” in the graph indicates that Verse determines the DL will
result in unsafe behaviors.

19

Figure 2.9: The leaderboard for Verse testing, with a slight modification to the original GRAIC
leaderboard, as shown in Figure 2.3

20

2.3.2 Decision Logic Verification with Verse

Our testing pipeline can also work with verification tools like Verse [38]. Verse is a Python-

based verification tool for hybrid systems, which calculates the reachable set of the system

using its dynamics and user-submitted decision logic. Given a set of initial states, the

reachable set is defined as all terminal states that the system can transition to under the

specified decision logic and dynamics. Understanding reachable sets is crucial because proving

that they do not intersect with unsafe sets at any time confirms that the decision logic

ensures safe execution.

One specific scenario tested using Verse is the automatic emergency braking (AEB)

decision logic (DL) for a car when a pedestrian suddenly appears in front. Although many

scenarios can be tested, we focus here on introducing the AEB testing setup. The pipeline

can be extended to other scenarios with appropriate modifications.

In this AEB scenario, the input to the DL is the ground truth distance to the pedestrian.

Based on this input, developers are tasked with designing DL that outputs various driving

modes, such as Normal, Accelerate, Brake, and Hard Brake. An example of the decision

logic is illustrated in Figure 2.7.

In this setup, the submission server retains its role as the initial contact point for

developers, who submit their decision logic scripts intended to control the vehicle in pedestrian

crossing scenarios.

The testing server, now integrated with the Verse library instead of the Carla simulator

used in previous setups, calculates the reachability of the decision logic script.

The results from this reachability analysis are then relayed to the output server, as shown

in Figure 2.9. Unlike the score metrics of time and collision count used in the GRAIC

competition, the outputs for decision logic testing are more complicated. The server generates

a detailed reachability HTML report, depicted in Figure 2.8, which visually represents the

reachability of the decision logic and the unsafe area, along with a counterexample file (if one

exists) to highlight any flaws in the decision logic. These outputs provide developers with

clear, accessible feedback on whether their vehicle’s decision-making logic has successfully

navigated the pedestrian-crossing scenario without incident.

21

2.4 User Experience

We have successfully applied our continuous testing pipeline to various events.

During the 2022 CPS-IoT Week, we launched our continuous testing pipeline with

the GRAIC competition. We received a total of 16 submissions from six teams spanning

three universities (University of Illinois at Urbana-Champaign, Stony Brook University,

University of North Carolina) and one company (Galois, Inc.). The effectiveness of our

testing is evidenced by every team’s final submission score being higher than their initial one,

indicating that our feedback helped them improve. Specifically, the Stony Brook University

team identified and fixed a memory leak in their planner code based on our feedback, which

significantly improved their score.

Additionally, we deployed the continuous testing pipeline for MP0 in UIUC’s ECE484:

Principles of Safe Autonomy course during the Fall 2023 semester, reaching both undergrad-

uate and graduate students (46 and 20 students, respectively). Student feedback from our

survey included positive remarks such as “It is clear and it can detect unsafe execution.”

Notably, two groups that did not achieve perfect scores initially were able to do so after

receiving our feedback with counterexample files.

In both cases, our continuous testing pipeline proved capable of delivering feedback within

15 minutes, identifying potential collisions or counterexamples in the designs, and aiding

student developers in debugging their design.

Moreover, we have extended the application of our continuous testing pipeline to com-

munity outreach events, where it received widespread support. At the 2022 Engineering

Open House, we set up the simulation for students of all age groups to experience our testing

pipeline, receiving 52 submissions1. We also used the continuous testing pipeline at the 2022

Summer Camp for six high school students2.

1During the 2022 EOH, our continuous testing pipeline won three awards: 1st place in the Spirit of
Innovation, 1st place in Most Engaging, and 2nd place in Outstanding Tech Exhibit

2For more details, check UIUC ECE News: https://ece.illinois.edu/newsroom/students-explore-
autonomous-vehicles-through-camp

22

https://cpsiotweek.neslab.it/
https://publish.illinois.edu/safe-autonomy/files/2022/08/ECE484_MP0_FA2022.pdf
https://ece.illinois.edu/newsroom/students-explore-autonomous-vehicles-through-camp
https://ece.illinois.edu/newsroom/students-explore-autonomous-vehicles-through-camp

2.5 Summary

In this chapter, we introduced an automated continuous testing pipeline designed specifically

for evaluating control algorithms. This pipeline improves the user experience by allowing users

to easily submit their controller designs through a website. Once submitted, the controllers

are tested across various scenarios within a simulator, and the results and feedback are quickly

provided via email and displayed on a public leaderboard. Furthermore, we have shown that

this continuous testing pipeline can assist developers in debugging their controllers using the

feedback provided.

23

Chapter 3

Controller Compensation for

Unreliable Perception

In the previous chapter, we focus on the testing of the controller, while assume the input

(perception information) to the controller is perfect. However, in real life application, perfect

perception is often not realizable. Therefore its common to rely on learning-based perception

module in many autonomous systems. Yet, the boundary where ML perception does or

does not work is poorly characterized. Incorrect perception can lead to unsafe or overtly

conservative downstream control actions. Therefore, in this chapter, we are going to propose

a method to correct controller for unreliable perception.

Section 3.1 provides motivation to the safe autonomous system while Section 3.2 conducts a

literature review. Section 3.3 defines the closed loop and the controller compensation problem

while Section 3.4 propose a two-step strategy for correcting ML-based state estimation using

Preimages of Perception Contracts (PPC) and a risk heuristic function. Section 3.5 perform

extensive simulation-based evaluation of this runtime controller compensation strategy

on different vision-based adaptive cruise controllers (ACC modules), in different weather

conditions, and road scenarios. Finally, Section 3.6 summarizes the work.

24

Figure 3.1: Screenshot of simulation of Autonomous Cruise Control (ACC) scenarios under different
weather conditions. Under rain and fog, ML-enabled perception designed to estimate crosstrack
error and distance to leading vehicles, can have larger errors. For example, it cannot detect a vehicle
in the the top-right scenario, and the confidence score (labeled outside the orange box) for detecting
nearby vehicle is lower. Our approach corrects for such perception errors for a family of controllers.

3.1 Overview on Perception Contract Methodology

Machine learning (ML) can play an important role in the creation of cyber-physical and

autonomous systems that operate in complex environments. Inexpensive sensors coupled

with powerful pre-trained ML models can serve as an attractive alternative to traditional

sensing and state estimation methods. At the same time, it is also well-known that ML

models suffer from fragile decision boundaries and adversarial examples [39]. Indeed, a major

AI safety concern is the potentially out-sized impact of this lack of robustness in safety

critical applications. On the other hand, for traditional control systems and cyber-physical

systems (CPS), there is a rich body of techniques for model-based design and analysis of

systems that are robust to certain types of disturbances [40]–[43]. These methods provide

rigorous guarantees about safety, robustness, and stability, but only in relatively structured

environments and with simple sensor models. In this paper, we explore the middle-ground

and aim to provide semi-formal safety guarantees for AI-enabled CPS.

25

Consider a vision-based Autonomous Cruising Control (ACC) system in which a vehicle

(controller) relies on perception for lane keeping and maintaining safe distance from a leading

vehicle. The perception module h (specifically Yolo [44] and LaneNet [45] in this example)

provides estimates of distance to the leading vehicle (provided there is one) and crosstrack

error with respect to the lane center. The vehicle controller g uses these observations or

estimates to compute the steering, throttle, and brake inputs for the vehicle (see Figure 3.2).

Setting aside the ML-based state estimator h for a moment, we observe that the rest of this

system is a classical cyber-physical system (CPS). If only we could assume that the state

estimator were perfect h∗ or that it came with reasonable error bounds, then a whole arsenal

of tools would become available for design and analysis: We could get stability envelops using

Lyapunov analysis, we could compute invariants using reachability, and so on. However,

like other machine learning models, h as implemented in Yolo and LaneNet do not have

error specifications and is fragile. Further, its output estimates depend on environmental

factors like lighting and weather in complex ways, which can violate safety of ACC (see

Figure 3.1). This near slip from grasp motivates us to investigate the following problem:

Given a controller g that preserves some invariant R with perfect perception h∗, and given a

real perception module h (implemented using ML and thus afflicted by fragility, environment,

lack of specs), can we modify or correct the output of h so that the resulting system preserves

the safety invariant R. We call this the controller compensation problem, and the formal

statement appears in Definition 3.1.

We propose a solution to this problem using preimages of perception contracts. A

perception contract M [46], [47] bounds the output of an ML-based state estimator as a

function of the ground truth state, so that it preserves a closed-loop invariant such as R

(see Definition 3.1). Different representations for perception contracts have been proposed

using piece-wise affine set-valued functions [46] and decision trees [47]. Perception contracts

have been used to verify a vision-based lane-keeping system [46], automated landing for

a drone [48], and distributed formation flight [49]. A closely related notion of weakest

preconditions has been used to analyze vision-based taxiing in the probabilistic setting [50].

While these ideas have been fruitful for offline verification, at runtime, the ground truth

26

state is not available, and therefore, perception contracts cannot be used for monitoring or

for taking corrective actions.

Our proposed method uses the simple observation that the preimage M−1 of a preception

contract (PPC)—which outputs the uncertainty in state given an input observation—can be

used at runtime. Specifically, if the set of states M−1(y) corresponding to an observation y

shows no risk of violating the target invariant R, then no corrective action is needed. On the

other hand if M−1(x) could potentially compromise safety, then some corrective action may

be necessary.

Calculating the preimage perception contract (PPC) directly is a complex task, and

hence, we use a Bayesian Neural Network (BNN) to construct the PPC based on data.

We then introduce a concept of risk, which defines a monotonous function relative to the

safety property across different states. Our proposed risk heuristic, guides control actions by

prioritizing the states within the inferred uncertain set that pose the highest level of risk, as

illustrated in Figure 3.3

By integrating the correction module at runtime, we were able to effectively recover 33

out of the 45 unsafe scenarios, resulting in a 73% recovery rate. It is important to note that

our inability to address all unsafe scenarios may be attributed to conformance violations

during the empirical construction of the preimage perception contract (PPC) from data.

Additionally, our evaluations demonstrate that the intervention of the module is minimal

and does not impose excessive or overly conservative control measures. In fact, our experi-

ments reveal only a 2.8% increase in the time required to complete tasks when our module is

integrated.

In summary, our approach to addressing the runtime controller compensation problem

involves the incorporation of the preimage perception contract (PPC) and a risk heuristic

into the existing closed-loop system. Initial findings have yielded promising results, indicating

that this method is effective in enhancing the system’s safety.

27

3.2 Related Work on Controller Design with Imperfect

Perception

With the emergence of increasingly sophisticated sensors, such as cameras, LiDAR, and radar,

coupled with the development of advanced perception algorithms, the issue of seamlessly

integrating these sensors and their associated machine learning-based algorithms into the

controller pipeline has become a prominent subject of research. In recent studies, innovative

methods like imitation learning [51] and reinforcement learning utilizing RGB cameras [52]

have been introduced to tackle the challenge of vision-based control for autonomous vehicles.

However, it is important to note that these approaches are data-driven, and they do not

effectively characterize or bound the potential errors in perception, which ultimately limits

their capacity to guarantee safety.

Recent research efforts have been primarily directed towards ensuring safety through

vision-based control. In the work by Dean et al. [53], the authors synthesized a vision-based

controller for autonomous vehicles and carried out theoretical analyses to establish a robust

safety guarantee. However, their approach involved simplifying the vehicle model to a linear

one. In a subsequent study, as presented in [54], the author proposed a Measurement-

Robust Control Barrier Function (MR-CBF) that incorporates an optimization method for

synthesizing a safe controller. Dawson et al. [55] focused on working with high-dimensional

sensors like LiDAR. They proposed a method for learning a control Lyapunov function

(CLF) and a control barrier function (CBF) within the observation space, without making

assumptions about the perception module. Additionally, in the work by Chou et al. [56],

the authors designed a neural network-based perception module capable of outputting a

set of potential states. Subsequently, they applied contraction theory and robust motion

planning algorithms to synthesize a robust and safe vision-based controller. This work is

closely related to our research; however, our approach involves generating a set of potential

states by learning the behavior of a black-box perception model, in contrast to their method,

which has to constructs such set of potential states while designing the perception model

from data. In [48], authors use the concept of perception contract to design a drone controller

28

for a safe landing problem, which is very close to the topic we are focusing on; however, their

method requires the drone to be static for some time for perception error to decrease.

3.3 Control compensation Problem

In this section, we introduce the different parts making up the perception-based control

system and then define the runtime control compensation problem.

The closed-loop system, comprises of three components: the plant with dynamics f , the

controller g, the learning-based perception module h.

Plant dynamics

The state of the physical part of the system is denoted by vector x ∈ X ⊂ Rn, where X

is called the state space. We denote by x[i] the ith component of x. For example, for an

autonomous vehicle, the state vector x may include its position, velocity, heading, distance

to front vehicle, etc.

System-level safety requirements are given in terms of a set of unsafe states , Unsafe ⊂ X ,

that the overall system must stay away from. The set of safe states, Safe = X \Unsafe, is

the complement of the unsafe states.

Example 3.1. Consider a vehicle (ego) following curvy lanes on a highway with objective

of ensuring that the vehicle stays within its lane and does not deviate. The state vector

is defined by valuations of several variables: {pE , vE , θ, dL}, where pE is ego vehicle’s pose

(position and heading), vE is ego vehicle’s velocity, θ is the angle between ego’s heading and

the lane’s heading, dL is vehicle’s cross-track error with respect to the center of the lane.

Since the vehicle enters an unsafe state when a lane departure occurs, then we can define the

unsafe states as a set, Unsafe = {(pE , vE , θ, dL) : |dL| ≥ L
2 }, where L is the lane width.

The evolution of the plant state is described by a dynamic function f : X × U 7→ X ,

where U is the control input space. In Example 3.1, the control inputs for the vehicle are

throttle t ∈ [0, 1], brake b ∈ [0, 1], and steering s ∈ [−1,+1], here −1 stands for the maximum

29

left steering input and +1 stands for maximum right steering. Given a state x ∈ X and an

input u ∈ U , the next state of the vehicle xt+1 = f(xt, ut).

Perception and control

The method developed in this paper targets systems in which the control input u is computed

in two stages: first, a perception module h interprets the signals generated in state x via

sensors to produce an observation y ∈ Y, and then, the controller g : Y → U takes as input

this observation y and computes the control input (for the plant). A diagram is shown in

Figure 3.2. In Example 3.1, h could output cross-track-error dL as the observation y, and

the controller could applies a hard brake whenever the dL is above some threshold.

The perception module h generates observation y from the actual plant state x. We name

a perfect observer h∗ : X 7→ Y . In Example 3.1, if x is known, the observation y (cross-track

error dL) can be directly obtained from x by dropping the extra state components and

retaining dL as observation. However, in most autonomous systems, usually state information

x cannot be directly obtained. Therefore, we rely on an observer h, which encapsulates

the behavior of the sensors that generate the raw signals (e.g., images, LIDAR returns) as

well as the algorithms (e.g., machine learning models, filters), to generate the observation y

from those signals. The signals also critically depend on certain environmental factors (e.g.,

lighting, fog, rain, etc.). The space of all possible such environmental conditions is denoted

by E . Thus, the perception module is modeled as a function h : X ×E → Y . In Example 3.1,

to achieve the lane following task, ego vehicle needs to first rely on the camera sensor to

generate an RGB image. Then, the analysis of this image is done using a ML algorithm (E.g.

LaneNet [45]), to produce lane information and subsequently cross-track-error dL.

There are several reasons for this two-stage architecture for the computation of u. First,

from the control theory point of view, it is standard to think of the whole pipeline as the

composition of a state estimator (h) and a controller (g). Loosely speaking, the certainty

equivalence principle assures that the optimality of controller design can be preserved by this

decomposition, under appropriate assumptions. The access to privileged state information,

like the observables, have also been noted to benefit the development of reinforcement

30

learning-based controllers [57].

Identifying all possible environmental factors that influence h can be a complex problem.

This work is based on the premise that domain experts prescribe the dominant factors in E

with respect to which runtime control compensation should be applied.

Closed-loop system

The discrete time evolution of the closed-loop system or simply the system S, in an environ-

ment e ∈ E , as shown in Figure 3.2, is given by the following:

xt+1 = f(xt, g(h(xt, e)). (3.1)

An execution in an environment e, is a sequence of states α(e) = x0, x1, . . . , such that

for each t, xt+1 and xt satisfy (3.1). With respect to an unsafe set Unsafe, the system S is

safe over an environment E′ ⊆ E and a set of initial states X0 ⊆ X , if for each e ∈ E′ and

x0 ∈ X0, none of the states in α(e) are in Unsafe, i.e., the reachable states of S are disjoint

from Unsafe.

Definition 3.1. A control invariant set R ⊆ X for the system S is a set such that:

1. R ⊆ Safe

2. ∀x ∈ R, ∃u ∈ U s.t. f(x, u) ∈ R.

There has been substantial progress in computing the control invariant sets for systems.

Notable techniques include barrier certificates[58], [59], formal controller synthesis[60], control

barrier functions[61], and more recently neural barrier functions[62].

These techniques vary in terms of the levels of knowledge needed about f, g, h, their

computational complexity, and the level of formal guarantee that they provide. However,

our system S includes learning-enabled perception h, which depends on the environment in

complex ways, and therefore, some of the existing techniques will not be directly applicable.

Instead, our sufficient condition for proving safety of the overall system is based on using

control invariant sets for an idealized controller-observer pair g∗, h∗. In the two-staged

31

observer-controller design paradigm, it is indeed common for the controller design to assume

that the observer is at least asymptotically correct. The following codifies this assumption

about such an idealized observer-controller pair.

Assumption 3.1 (Safety with perfect observer-controller). There exists a perfect observer

h∗ : X → Y and controller g∗ : Y → U pair for a given safe invariant set R ⊆ Safe. That is,

for any x ∈ R, f(x, g∗(h∗(x)) ∈ R.

Due to environmental uncertainty, sensor noise, and inaccuracies in the Deep Neural

Network, the observation h(x, e) may not be accurate and deviate from h∗(x), which could

lead to unsafe conditions (e.g., incorrect lane detection causing lane invasion in foggy

conditions). As a result, in certain cases, even though the system has a safe controller

under perfect perception (Assumption 3.1), there is no guarantee the system is safe with the

neural-network based perception module h.

Problem 3.1 (Runtime control compensation problem).

Given:

• a perfect observer-controller pair g∗, h∗ and a corresponding control invariant set R

that proves safety of the closed-loop system S with respect to Safe.

• an actual (learning-enabled) observer module h that depends on environment factors in

E.

The objective is to synthesize a controller ĝ : Y 7→ U such that ∀x0 ∈ X0, e ∈ E0, the new

closed loop system with h, g is safe.

In addition, to ruling out trivial solutions (e.g., always brake and stop), we have a

soft-requirement that the new system with g and h should be minimally invasive over S.

Metrics for invasiveness are not straightforward to define, and we will consider some examples

in Section 3.5.

32

3.4 Preimage of Perception Contract for Safe Control

Our idea for solving the above problem involves two stages: the first stage infers the

uncertainty in the state of the system at runtime from the observations, and the second

stage takes control action based on the riskiest states in inferred uncertain set. For reasons

that will become clear below, the first stage is called Preimage of a Perception Contract

(PPC) and the latter is called a risk heuristic. The difficulty of inferring the uncertainty in

the actual state from observations is addressed using using the recently invented notion of

perception contracts

3.4.1 Perception Contracts M

Safety analysis of machine learning-enabled and perception-based control systems is hard

since we do not have specifications for the ML modules. Specification are not only necessary

for formal verification, but they form the basis for modern, large-scale software engineering

by enabling unit tests, modular design, and assume-guarantee reasoning. In [46], [47] the

authors introduce the notion of perception contracts for addressing this problem. A perception

contract M for an actual perception module h, in the context of a closed loop system S, and

its control invariant set R, captures two ideas: First, M is an over-approximation of h, over

at least some part of the relevant environment space E . This is called the conformance of

the contract. Second, M preserves system-level correctness of S with respect to R. That is,

if M is plugged-in to S, then the resulting closed-loop system, SM , should preserve R.

Definition 3.2. For a given perception module h : X × E → Y, an invariant set R ⊆ X ,

and an environment E ′ ⊆ E, a perception contract is a map M : X → 2Y that satisfies the

two conditions:

1. Conformance: ∀x ∈ R, e ∈ E′, h(x, e) ⊆ M(x).

2. Correctness: ∀x ∈ R, f(x, g(M(x)) ⊆ R.

Note that here we use 2Y to denote a powerset of Y.

33

In the previous works, the authors have shown that it is possible to construct such

contracts from data for vision-based lane keeping systems and for automated landing systems.

The constructed contracts can indeed be used to rigorously prove system-level safety (e.g., car

does not leave the lane boundaries). In [46], for example, M(·) is a piece-wise affine set-valued

function constructed from data, and the correctness condition is verified using program

analysis. Owing to the complexity of the actual perception pipeline h and its complex

dependence on the environment E, the conformance property is empirically validated based

on input-output data.

3.4.2 Preimage of Perception Contracts M−1

Inspired by perception contracts, in this work we explore how such contracts can be used at

runtime to possibly correct perception errors. The challenge we face is that the ground truth

state x is not available at runtime to use M(x), even though, M(·) is computed offline. Our

key idea is to use the preimage of perception contracts, that is, M−1 : Y → 2X . Conceptually,

for a given observation y ∈ Y, its preimage M−1(y) gives the set of all possible states that

could generate y, in some environment E ′.

For a given perception contract M : X → 2Y we define M−1 : Y → 2X as M−1(y) :=

{x | y ∈ M(x)}. It follows that, if that for any realizable y ∈ Y, if observer function h

conforms to M over E ′, then h−1(y) ⊆ M−1(y).

Proposition 3.1. Consider any realizable observation y ∈ Y, such that there exists x ∈

X , e ∈ E ′ with h(x, e) = y. If h conforms to the perception contract M , then h−1(y) ⊆

M−1(y).

Proof. Follows from the definitions. Consider any realizable y ∈ Y and let h−1(y) :=

{x | ∃e ∈ E ′, h(x, e) = y}. Consider any x ∈ h−1(y). Since, h conforms to M over E ′,

h(x, e) = y ∈ M(x), for some e ∈ E ′. By definition of M−1, then x ∈ M−1(y).

34

Figure 3.2: This is the block diagram of the closed loop system S, which is mathematically
described in Equation (3.1)

Figure 3.3: This is the block diagram of the new closed-loop system SMJ with our runtime
control compensation module from y to ŷ, which is mathematically described at Equation (3.6)

35

3.4.3 Constructing PPC from data

Ideally, PPC should achieve perfect conformance, i.e., Proposition 3.1 should always hold.

However, this perfect conformance requirement of PPC might be too strong for real au-

tonomous system involving perception. In this paper, instead of directly learning M−1 from

M , we propose a method to empirically learn a PPC from data using Bayesian Neural

Network(BNN). We choose BNN as our model architecture due to its ability to model

uncertainty and its ability to generalize from limited training data.

Let dataset D := {(yi, (xi, ei))}, where yi is the input data, (xi, ei) is the output label.

Traditional neural networks output a point estimate for a given input, that is, they produce

one deterministic value (or vector of values) given an input vector, i.e. (x, e) = fθ∗(y), where

f is the neural network parameterized by a deterministic optimal θ∗, and θ∗ in practise is

obtained by conducting gradient descend to minimize the loss function.

θ∗ = argmin
θ

∑
(xi,ei,yi)∈D

L(fθ(yi), (xi, ei))). (3.2)

A Bayesian Neural Network(BNN), in contrast, produces a distribution over possible

outputs for an input vector, since the parameters of the BNN are also random variables, i.e.

x̃, ẽ = fθ̃(y) where x̃, ẽ, θ̃ are both random variables. This probabilistic approach allows for

the modeling of uncertainty, which can be essential in many applications, especially when

decisions based on the output have significant implications, like in autonomous driving[63].

In this paper, we use a specific kind of BNN, where the prior distribution of the BNN

weights follow a Gaussian distribution, i.e., θ ∼ N (µ,Σ), the optimal weights are parameter-

ized by µ∗,Σ∗. Similarly to traditional neural networks, in practice, the optimal weight is

found by doing gradient descend on the loss function.

µ∗,Σ∗ = argmin
µ,Σ

∑
(xi,ei,yi)∈D

L(fθ(xi, ei), yi)−KL(p(θ), p(θ0)). (3.3)

where θ0 is a normal distribution, i.e., θ0 ∼ N (0, 1). The KL divergence is added to to the

loss function to prevent the weight from drifting away from normal distribution. We use

36

a Gaussian distribution as a prior for weight of the BNN, because the Gaussian prior acts

as a natural form of regularization to avoid overfitting, and have been used as a common

technique in training the BNN. [64]–[66].

During the inference time of the BNN, we can get a set of x̂, ê given y, simply by sampling

the querying the trained BNN N times. We include both x and e during training process to

increase the training accuracy. But for the runtime control compensation problem, we only

need to infer for x, so we will drop the e dimension when making up M−1 as follows:

M−1(y) = {xi|(xi, ei) ∼ fθ∗(y)}Ni=1. (3.4)

3.4.4 Risk Heuristic

We introduce a notion of risk which defines a monotonic function over states with respect to

the safety property. A similar notion “Monotonic Safety” was used in [67] to remove the

uncertainty of non-deterministic models for Statistic Model Checking.

Definition 3.3. For a given control invariant set R ⊆ X , a risk function J : X 7→ R≥0

assigns a real value to each state such that for any two safe states x1, x2 ∈ Safe, if J(x1) ≥

J(x2) and there exists an R-preserving control ū ∈ U for x1, then ū also preserves R for x2,

that is, f(x2, ū)) ∈ R.

Informally, if a more risky state preserves the invariant R, then a less risky state also

preserves the same invariant by taking the same control action. In Examaple 3.1, consider the

ego vehicle following lanes on curvy highway and two states x1=(pE1, vE = 5, θ = 0, dL = L
2),

x2=(pE2, vE = 5, θ = 0, dL = 0), and a risk function J(x) = |dL|, which measures the risk as

distance to lane center. It’s obvious that J(x1) ≥ J(x2) since x1 is on the lane boundary while

x2 is in the lane center, and if the next state of x1 with full throttle u = (t = 1, b = 0, s = 0)

under dynamics is in R, then x2 with the same full throttle control will also stay in R.

Using the risk heuristic J , we can define a corresponding function CJ that chooses the

riskiest state from the intersection of the PPC M−1 and the invariant set R. Here we take

the intersection because, according to definition 3.1, states outside R cannot guarantee the

37

existence of control values that will preserve the invariant set R.

CJ(M
−1(y)) = argmax

x∈M−1(y)∩R

J(x). (3.5)

Finally, we apply the perfect observer h∗ and subsequently the control function g to the

state returned by Cj(M
−1(y)) to compute the control input to the plant. The evolution of

the resulting corrected closed-loop system SMJ is given by (shown in Figure 3.3):

xt+1 = f(xt, g(h
∗(CJ(M

−1(h(xt, e)))))). (3.6)

We claim that SMJ indeed preserved the safety invariant R provides h conforms to M ,

and therefore, solves the runtime control compensation problem.

Theorem 3.1. Given a preimage of a perception contract M−1 for the actual perception

function h such that h conforms to M and a risk heuristic J for R, the corrected system

SMJ described by Equation (3.6) preserves the invariant R for E ′ ∈ E.

Proof. Consider any xt ∈ R to be the input of h. From Proposition 3.1, we know that for

any xt ∈ X , e ∈ E ′ with h(xt, e) = y, if h conforms to the perception contract M , we have

xt ∈ M−1(h(xt, e)). (3.7)

Since xt ∈ R then M−1(h(xt, e)) ∩R ̸= ∅. From Equation (3.5), we have the output of the

heuristic function, calling it x̂, satisfying

x̂ = CJ(M
−1(h(xt, e))) ∈ (M−1(h(xt, e)) ∩R) ⊆ R. (3.8)

From Assumption 3.1, since x̂ ∈ R, we know that there exists g such that

f(x̂, g(h∗(x̂)) ∈ R. (3.9)

From Equation (3.5), since x̂ is chosen to maximize the Risk Function J within (M−1(y)∩R),

38

then J(x̂) ≥ J(xt). From Definition 3.3, we hence have that

xt+1 = f(xt, g(h
∗(x̂)) ∈ R ⊆ Safe. (3.10)

thus concluding the proof.

3.5 Case Study: Adaptive Cruising Control

In this section, we introduce the details of an autonomous cruise control system (ACC) as

well as presenting evaluation and result on our methods with various ACC scenarios.

3.5.1 Autonomous Cruise Control Problem

The driver assistance feature we study is a combination of lane keeping and adaptive cruise

control. Similar autonomy features commercially go by other names such as AutoPilot,

Travel Assist, AutoCruise, etc. In typical operation, the ego vehicle moves at a set speed

behind a lead vehicle. Both vehicles follow (possibly curving) lanes. If the lead vehicle slows

down then the ego vehicle has to maintain safe separation. The ego vehicle’s autonomy

pipeline uses vision-based perception. We explore three lane configurations: Track 1, a lane

with left curve; Track 2, a lane with right curve; Track 3, a straight lane.

The state of the whole system includes (pE , pF , vE , vF , θ, dL, dF), where pE , pF are the

pose (position and heading) of the ego vehicle and the leading vehicle respectively, vE , vF

are the velocity of the ego vehicle and the leading vehicle respectively, θ is the angle between

ego’s heading and the lane’s heading, dL is ego vehicle’s distance to lane center(also known

as cross track error), dF is ego’s distance to the leading vehicle. The unsafe set is defined

as states where the ego vehicle is out of the lane boundaries or there is a collision, i.e.

Unsafe = {(pE , pF , vE , vF , θ, dL, dF)|dL ≥ L
2 ∨ dF ≤ W}, where L is the lane width and W

is the vehicle length. The observations given by sensors and ML-based perception will consist

of (θ, dL, dF), which have the same meaning as the state variables with the same names

above.

39

We use CARLA [68] to create and run the scenarios. CARLA is an open-source platform

designed specifically to support the development and validation of autonomous driving

systems. For the ego vehicle and the leading vehicle, we use the Carla built-in Tesla Model 3

vehicle’s dynamics. We use a reachability tool [69] to approximate the invariant R.

A key advantage of CARLA lies in its ability to create realistic and diverse real-world

scenarios, as well as different weather conditions (ranging from clear skies and rain to fog

and snow) that could affect the sensor readings. During runtime testing, we consider six

weather conditions ranging from demanding environments such as late night, heavy fog, and

rain to clear skies (optimal driving conditions): Weather 1 to 5 represent decreasing levels of

fog and rain, with Weather 6 characterized by clear skies. We intentionally chose 5 extreme

weather conditions to assess their impact on perception h.

Perception h We use two learning-based perception module to detect the front vehicle and

the lane: YOLO v8n [44] and LaneNet [45]. YOLO v8n, an evolution of the ’You Only Look

Once’ series, is utilized for its swift and accurate object detection capabilities, particularly

for identifying front leading vehicles. It is known for offering high detection accuracy while

ensuring minimal latency. On the other hand, LaneNet is employed specifically for its

prowess in lane detection. This architecture combines semantic segmentation with instance

segmentation to precisely distinguish between individual lane lines, even in challenging

conditions. Together, YOLO v8n and LaneNet form a routine perception backbone, ensuring

our autonomous vehicle is consistently aware of its surroundings, which is also a commonly

adopted by the research community for autonomous vehicle systems [70]. The two modules

will output location of leading vehicle and lanes in the camera frame. Together with a depth

camera and the known intrinsic and extrinsic matrix of the camera sensor, we can get the

observation y := (θ, dL, dF). We fine-tuned the two models on a customized Carla image

dataset.

Controller g We experiment with 3 lateral and 1 longitudinal controller. The controllers

are implementations of racing controllers submitted by leading participants of the GRAIC

competition [71]. All controllers take the same observations, and produce the control values,

40

namely throttle, brake and steering.

The lateral controllers we have from GRAIC are a modified verison of Pure Pursuit[72], a

modified version of Stanley[73] and a simplified kinematic steering control. The Pure Pursuit

algorithm computes the required steering angle based on the vehicle’s lookahead distance;

the Stanley controller computes the steering based on the vehicle’s orientation relative to the

path and cross-track-error; the simplified kinematic steering control uses simple geometric

solution to the path-following problem.

For longitudinal control, we utilize a PID controller, designed to maintain a constant

vehicle speed with high precision. In scenarios demanding instant decisions, such as potential

collisions, we incorporate the Responsibility Sensitive Safety (RSS) formula. This ensures

the vehicle brakes promptly and safely, taking into account both the vehicle’s dynamics and

the surrounding environment.

The vehicle controller g is a combination of both lateral control and longitudinal control.

We name the combination of Pure Pursuit and PID Controller C1, the combination of Stanley

and PID C2, the combination of kinematic control and PID C3.

The combination of three road geometries, six set of weather, and three controllers

define 54 different ACC scenarios. Each scenario can be modeled as a closed loop system S

satisfying Equation (3.1) if we are using perception h. Moreover, each scenario can also be

modeled as a new closed loop system SMJ satisfying Equation (3.6) if we use both perception

h and our runtime controller compensation (M−1, CJ , h
∗).

3.5.2 Construction of Preimage Perception Contract M−1

To obtain training data for generating preimage perception contract, we run a safe controller

across 20 sets of different weather conditions and 3 different lane configurations to collect

pairs of ground truth states x and observation y = h(x, e). We run the controller for 3 hours

and collect 5k set of such pairs to make up the dataset D = {(yi, (xi, ei))}, where yi is the

input feature, and (xi, ei) is the output label.

We divide the dataset into 80% training dataset, and the rest 20% for validation, as this

is a common practice in neural network training. We trained the data for 3000 epoches with

41

batch size 32 on a BNN, discussed at Section 3.4.3. The BNN has 3 hidden layers with 32,

128, 16 neurons respectively. We assume the prior distribution of each layer’s weights follow

a Gaussian distribution N (0, 0.3), we use learning rate 0.01. The layers, neurons and prior

distributions are hyper-parameters subject to tuning. We find such hyper-parameters after

empirical tryouts.

3.5.3 Choice of Risk Function

The high-level idea behind the specific risk function J : X 7→ R≥0 we chose in this case

study is that the closer the vehicle is to unsafe state, the more risk the state will have. This

function is monotonically increasing with respect to the inherent risk of the state.

We define the risk as the L∞ norm of the weighted inverse of the distance to the unsafe

region, taken over each dimension of the state space.

J(x) =

∥∥∥∥∥∥∥∥∥∥∥∥∥

w1

x[1]−xu[1]

w2

x[2]−xu[2]

...

wn

x[n]−xu[n]

∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

(3.11)

where xu = (0, 0, 0, 0, π
2 ,

L
2 ,W) is the unsafe boundary for the state variables (pE , pF , vE , vF , θ, dL, dF)

and the corresponding weight w = (0, 0, 0, 0, 0.2, 0.4, 0.4). w is carefully chosen after empir-

ically tryouts to satisfy Definition 3.3. The idea behind such choice of weight is because

we want to assign high risks to vehicle states where it’s too close to the leading vehicle (i.e.

dF = W is where collision will happen) or cross track error is too high (i.e. dL = L
2 is where

out-of-lane will happen) or heading error is too large(i.e. θ = pi
2 is where ego is almost

perpendicular to the lanes).

3.5.4 Result: PPC corrects 73% unsafe scenarios

We first ran ego with perfect observer h∗ (i.e., ground truth observation provided by Carla

simulator), and all 54 scenarios result in safe execution, which indicates that Assumption 3.1

42

Track 1 Track 2 Track 3
Scenarios h M−1 h M−1 h M−1

Weather 1
C1 X X X X X X
C2 X X X ✓ X ✓
C3 X ✓ X ✓ X ✓

Weather 2
C1 X X X ✓ X ✓
C2 X ✓ X ✓ X ✓
C3 X ✓ X ✓ X ✓

Weather 3
C1 X X X X X X
C2 X X X ✓ X ✓
C3 X ✓ X ✓ X ✓

Weather 4
C1 X X X X X ✓
C2 X X X ✓ X ✓
C3 X ✓ X ✓ X ✓

Weather 5
C1 X ✓ X ✓ X ✓
C2 X ✓ X ✓ X ✓
C3 X ✓ X ✓ X ✓

Weather 6
C1 ✓ ✓ ✓ ✓ ✓ ✓
C2 ✓ ✓ ✓ ✓ ✓ ✓
C3 ✓ ✓ ✓ ✓ ✓ ✓

Table 3.1: Safety evaluation under a variety of road conditions, weather and controllers. ”X”
indicates unsafe scenarios while ”✓” signifies ego can finish the scenario safely

holds for the three controllers we have. Next, we ran ego with perception module h on

the same 54 scenarios. We discovered that, ego safely finished 9 scenarios while the rest

45 scenarios resulted in an unsafe finish (e.g., either a collision with the front vehicle or

steering out of lanes). Last, we ran the ego with h complemented by our runtime controller

compensation module (M−1, CJ , h
∗), and we see that our method maintains safety in 9

scenarios where using h alone is safe; furthermore, it can recover 33 out of the 45 (73 %

recover rate) unsafe scenarios in which h failed. We looked into the log of 12 scenarios where

our approach cannot recover, and we noticed that it’s due to that h−1 does not fully conform

to the constructed PPC from data(i.e. x = h−1(y) /∈ M−1(h(x, e)) for some x ∈ X , e ∈ E ′ in

these 12 scenarios) , which violated the conformance assumption of Theorem 3.1 and, thus,

safety can not be guaranteed. Detailed results are provided in Table 3.1.

43

(a) (b)

Figure 3.4: The two graphs show PPC’s prediction on one of the state dimension(distance to
front vehicle dF). Red dot indicates ground truth distance given by h∗, while green dots
indicate observed distance given by h. Shaded area represented the constructed PPC M−1

.

Figure 3.5: Vehicle’s steering profile on one particular scenario.

44

3.5.5 Result: Compensation Intervention are minimally evasive

While the runtime controller compensation module helps to maintain safety, it can also be

integrated without inducing overly unnecessary behaviors, such as frequent stops or excessive

adjustments. We look at the vehicle’s steering profile of one particular example(Track 1,

Weather 6, C3) in Figure 3.5. We noticed that most of the time, our runtime controller

compensation results in a similar steering value as ones produced by the perfect observer h∗.

Most of the time, runtime controller compensation module does not result in unnecessary

movement except for timestamp 270 to 280, where the curvature of the map slightly increase

and our PPC captures a large uncertainty in perception errors, thus results in a large control

value.

Given the large number of experiments, analyzing each scenario by directly comparing

control values can be both time-consuming and potentially misleading, due to temporal shifts

in these values. As such, we employ a more informative quantitative metric – time to finish

the scenario, which helps in gauging whether the vehicle engages in unnecessary behaviors.

Due to the fact that each track has different length and potentially different time to finish,

we compared the time to finish using perception h and our runtime controller compensation

module (M−1, CJ , h∗) with time to finish with perfect observer h∗. Then in Table 3.2, we

show the percentage of increase in time to finish using our runtime controller compensation

module. As presented, the percentage increases in completion time are, for the most part,

negligible. The average percentage increase in time to finish the 33 scenarios is 2.8%. This

shows that our approach is minimally invasive to the original closed loop system.

3.5.6 Result: PPC can be empirically constructed by BNN

We evaluated whether the constructed PCC is effective by applying the trained BNN model

on scenarios not in its training data, and we see that for 91.2% of the testing data, h−1

conforms to the constructed M−1 (i.e. x = h−1(y) ∈ M−1(h(x, e)) for x, e in the testing

dataset). We show an example of how PCC visualizes in Figure 3.4a, 3.4b. We see that, for

most of the time, the constructed PCC through BNN always include the ground truth, which

45

Track 1 Track 2 Track 3

Weather 1
C1 X X X
C2 X +1.5% +4.1%
C3 +3.2% +2.6% +4.6%

Weather 2
C1 X +1.0% +3.0%
C2 +1.3% +1.5% +3.6%
C3 +3.2% +2.6% +4.1%

Weather 3
C1 X X X
C2 X +1.5% +4.6%
C3 +3.2% +2.6% +5.2%

Weather 4
C1 X X +2.5%
C2 X +1.5% +3.6%
C3 +3.2% +2.6% +4.1%

Weather 5
C1 +2.6% +1.0% +2.5%
C2 +1.3% +1.5% +3.6%
C3 +3.2% +2.6% +5.2%

Weather 6
C1 +2.6% +1.0% +2.5%
C2 +1.3% +1.5% +4.6%
C3 +3.2% +2.6% +4.1%

Table 3.2: Percentage of increase in time to finish by comparing system use runtime controller
compensation (M−1, CJ , h∗) with system that uses perfect observer h∗. ”X” indicates our
runtime controller compensation module cannot finish that scenario safely

satisfies the conformance property of M−1. For example, in Figure 3.4a, between timestamp

200 and 250, although observed distance, generated by perception h, slightly differ from

ground truth distance, the PCC we constructed(yellow shaded part) through BNN always

contain the ground truth.

3.6 Summary

We presented our method, which leverages the preimage perception contract and a risk

heuristic, to correct learning-based perception errors for safety during runtime, assuming

perfect conformance. Empirically, our approach demonstrated the capability to rectify 73%

of unsafe Adaptive Cruise Control (ACC) scenarios stemming from perception errors, while

minimizing unnecessary behavior.

46

3.6.1 Limitation

Ideally, by theorem 3.1, we should be able to recover any unsafe scenarios caused by noisy

perception module. However, the empirical result only showed 73% success. This is due

to the fact that constructing the Preimage Perception Contract M−1 through BNN does

not guarantee 100% conformance. In other words, Proposition 3.1 might not always hold;

however, in the same time, constructing M−1 using any data-driven method(E.g. quantile

regression) will face the same issue.

47

Chapter 4

Conclusions

As the research and industry sectors increasingly focus on the development of autonomous

systems, the challenge of creating safe and reliable designs has come to the forefront. This

thesis has tackled two major topics within the realm of safe autonomous vehicle systems:

continuous testing and controller correction for unreliable perception. First, we introduced a

continuous testing pipeline that abstracts away the perception module by assuming perfect

perception. This approach enables us to test and evaluate the controller across various

scenarios and provide targeted feedback on controller design to users, thereby helping them

enhance the robustness and safety of the controller designs. Subsequently, we addressed the

controller correction problem through synthesis, aiming to adjust a controller’s behavior

under real-life, ML-based perception modules. This effort further improves the robustness

and safety of controllers when interacting with real-world perception data.

4.1 Future Work

For future work, we plan to enhance the continuous testing pipeline in several key areas:

1. Scaling the system for a larger number of submissions: The current system

handles a relatively small number of submissions, approximately 10 even during peak

times. We aim to improve testing efficiency by parallelizing testing tasks. Utilizing

48

Kubernetes containers across different machines appears to be a promising approach

to facilitate this scaling.

2. Providing more meaningful feedback to users: While we currently provide

comprehensive data logs for debugging, we intend to offer more insightful interpretations

of these results. Identifying scenarios in which the controller is most likely to fail could

provide valuable insights. Integrating large language models into the testing pipeline

could enhance our ability to analyze and interpret test outcomes more effectively.

We also plan to improve our method for correcting controllers under unreliable perception

in the following ways:

1. Constructing fully conformant PPC: Our current BNN-based training method

does not always guarantee conformance, making our method less than 100% sound.

Exploring alternative architectures or models to construct a fully conformant PPC is a

critical next step.

2. Scaling to different autonomous systems: Since our method currently operates

only in simulations for autonomous vehicles, its feasibility on actual hardware remains

untested. It would be intriguing to see if this approach can generalize to other

systems, such as robotic systems in hardware, including drones. Given that all current

experiments are conducted in software, transitioning to hardware applications would

be a significant advancement.

49

References

[1] T. W. Team, “Waymo significantly outperforms comparable human benchmarks over

7+ million miles of rider-only driving,” 2023. [Online]. Available: https://waymo.

com/blog/2023/12/waymo- significantly- outperforms- comparable- human-

benchmarks-over-7-million/.

[2] U. of Michigan Center for Sustainable Systems, “Autonomous vehicles factsheet, pub.

no. css16-18,” 2023. [Online]. Available: https://css.umich.edu/publications/

factsheets/mobility/autonomous-vehicles-factsheet.

[3] J. Gawron, G. Keoleian, R. De Kleine, T. Wallington, and H. C. Kim, “Life cycle

assessment of connected and automated vehicles: Sensing and computing subsystem

and vehicle level effects,” Environmental Science & Technology, vol. 52, Feb. 2018. doi:

10.1021/acs.est.7b04576.

[4] Z. Wadud, D. Mackenzie, and P. Leiby, “Help or hindrance? the travel, energy and

carbon impact of highly automated vehicles,” Transportation Research Part A Policy

and Practice, vol. 86, pp. 1–18, Apr. 2016. doi: 10.1016/j.tra.2015.12.001.

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified,

real-time object detection, 2016. arXiv: 1506.02640 [cs.CV].

[6] Z. Wang, W. Ren, and Q. Qiu, Lanenet: Real-time lane detection networks for au-

tonomous driving, 2018. arXiv: 1807.01726 [cs.CV].

[7] Z. Zhu, Q. Wang, B. Li, W. Wu, J. Yan, and W. Hu, Distractor-aware siamese networks

for visual object tracking, 2018. arXiv: 1808.06048 [cs.CV].

50

https://waymo.com/blog/2023/12/waymo-significantly-outperforms-comparable-human-benchmarks-over-7-million/
https://waymo.com/blog/2023/12/waymo-significantly-outperforms-comparable-human-benchmarks-over-7-million/
https://waymo.com/blog/2023/12/waymo-significantly-outperforms-comparable-human-benchmarks-over-7-million/
https://css.umich.edu/publications/factsheets/mobility/autonomous-vehicles-factsheet
https://css.umich.edu/publications/factsheets/mobility/autonomous-vehicles-factsheet
https://doi.org/10.1021/acs.est.7b04576
https://doi.org/10.1016/j.tra.2015.12.001
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1807.01726
https://arxiv.org/abs/1808.06048

[8] N. Wojke, A. Bewley, and D. Paulus, Simple online and realtime tracking with a deep

association metric, 2017. arXiv: 1703.07402 [cs.CV].

[9] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[10] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime motion

planning using the rrt*,” in 2011 IEEE International Conference on Robotics and

Automation, 2011, pp. 1478–1483. doi: 10.1109/ICRA.2011.5980479.

[11] M. Montemerlo, J. Becker, S. Bhat, et al., “Junior: The stanford entry in the urban

challenge,” in The DARPA Urban Challenge: Autonomous Vehicles in City Traffic,

M. Buehler, K. Iagnemma, and S. Singh, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2009, pp. 91–123, isbn: 978-3-642-03991-1. doi: 10.1007/978-3-642-

03991-1_3. [Online]. Available: https://doi.org/10.1007/978-3-642-03991-1_3.

[12] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory generation for

dynamic street scenarios in a frenet frame,” Jun. 2010, pp. 987–993. doi: 10.1109/

ROBOT.2010.5509799.

[13] I. Gog, S. Kalra, P. Schafhalter, M. A. Wright, J. E. Gonzalez, and I. Stoica, “Pylot:

A modular platform for exploring latency-accuracy tradeoffs in autonomous vehicles,”

in 2021 IEEE International Conference on Robotics and Automation (ICRA), IEEE,

2021, pp. 8806–8813.

[14] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic

Systems (8th Edition) (What’s New in Engineering). Pearson, 2018, isbn: 0134685717.

[Online]. Available: https : / / www . amazon . com / Feedback - Control - Dynamic -

Systems-Engineering/dp/0134685717?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&

tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=

0134685717.

[15] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun, “Autonomous automobile

trajectory tracking for off-road driving: Controller design, experimental validation and

racing,” in 2007 American Control Conference, 2007, pp. 2296–2301. doi: 10.1109/

ACC.2007.4282788.

51

https://arxiv.org/abs/1703.07402
https://doi.org/10.1109/ICRA.2011.5980479
https://doi.org/10.1007/978-3-642-03991-1_3
https://doi.org/10.1007/978-3-642-03991-1_3
https://doi.org/10.1007/978-3-642-03991-1_3
https://doi.org/10.1109/ROBOT.2010.5509799
https://doi.org/10.1109/ROBOT.2010.5509799
https://www.amazon.com/Feedback-Control-Dynamic-Systems-Engineering/dp/0134685717?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0134685717
https://www.amazon.com/Feedback-Control-Dynamic-Systems-Engineering/dp/0134685717?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0134685717
https://www.amazon.com/Feedback-Control-Dynamic-Systems-Engineering/dp/0134685717?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0134685717
https://www.amazon.com/Feedback-Control-Dynamic-Systems-Engineering/dp/0134685717?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0134685717
https://doi.org/10.1109/ACC.2007.4282788
https://doi.org/10.1109/ACC.2007.4282788

[16] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive active steering

control for autonomous vehicle systems,” IEEE Transactions on Control Systems

Technology, vol. 15, no. 3, pp. 566–580, 2007. doi: 10.1109/TCST.2007.894653.

[17] M. Harris, Behind the scenes of waymo’s worst automated truck crash self-driving

semi was hit and run in may, then everything went quiet, 2022. [Online]. Available:

https://techcrunch.com/2022/07/01/behind-the-scenes-of-waymos-worst-

automated-truck-crash/.

[18] Cruise, Cruise releases third-party findings regarding october 2, 2023. [Online]. Available:

https://www.getcruise.com/news/blog/2024/cruise-releases-third-party-

findings-regarding-october-2/.

[19] G. Rapier, Tesla’s autopilot confused a burger king sign for a stop sign. the fast-food

chain turned it into an ad, 2020. [Online]. Available: https://www.businessinsider.

com/tesla-autopilot-mistakes-burger-king-stop-sign-new-ad-2020-6/.

[20] S. Tang, Z. Zhang, Y. Zhang, et al., “A survey on automated driving system testing:

Landscapes and trends,” ACM Trans. Softw. Eng. Methodol., vol. 32, no. 5, Jul. 2023,

issn: 1049-331X. doi: 10.1145/3579642. [Online]. Available: https://doi.org/10.

1145/3579642.

[21] K. Miller, C. Fan, and S. Mitra, “Planning in dynamic and partially unknown envi-

ronments,” IFAC-PapersOnLine, vol. 54, no. 5, pp. 169–174, 2021, 7th IFAC Con-

ference on Analysis and Design of Hybrid Systems ADHS 2021, issn: 2405-8963.

doi: https://doi.org/10.1016/j.ifacol.2021.08.493. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2405896321012684.

[22] C. Fan, K. Miller, and S. Mitra, “Fast and guaranteed safe controller synthesis for

nonlinear vehicle models,” in Jul. 2020, pp. 629–652, isbn: 978-3-030-53287-1. doi:

10.1007/978-3-030-53288-8_31.

[23] Y.-S. Wang, N. Matni, and J. C. Doyle, “A system-level approach to controller

synthesis,” IEEE Transactions on Automatic Control, vol. 64, no. 10, pp. 4079–4093,

2019. doi: 10.1109/TAC.2018.2890753.

52

https://doi.org/10.1109/TCST.2007.894653
https://techcrunch.com/2022/07/01/behind-the-scenes-of-waymos-worst-automated-truck-crash/
https://techcrunch.com/2022/07/01/behind-the-scenes-of-waymos-worst-automated-truck-crash/
https://www.getcruise.com/news/blog/2024/cruise-releases-third-party-findings-regarding-october-2/
https://www.getcruise.com/news/blog/2024/cruise-releases-third-party-findings-regarding-october-2/
https://www.businessinsider.com/tesla-autopilot-mistakes-burger-king-stop-sign-new-ad-2020-6/
https://www.businessinsider.com/tesla-autopilot-mistakes-burger-king-stop-sign-new-ad-2020-6/
https://doi.org/10.1145/3579642
https://doi.org/10.1145/3579642
https://doi.org/10.1145/3579642
https://doi.org/https://doi.org/10.1016/j.ifacol.2021.08.493
https://www.sciencedirect.com/science/article/pii/S2405896321012684
https://doi.org/10.1007/978-3-030-53288-8_31
https://doi.org/10.1109/TAC.2018.2890753

[24] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis, “Controller synthesis for timed au-

tomata1,” IFAC Proceedings Volumes, vol. 31, no. 18, pp. 447–452, 1998, 5th IFAC

Conference on System Structure and Control 1998 (SSC’98), Nantes, France, 8-10

July, issn: 1474-6670. doi: https://doi.org/10.1016/S1474-6670(17)42032-5.

[Online]. Available: https://www.sciencedirect.com/science/article/pii/

S1474667017420325.

[25] C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski, “Controller synthesis for

probabilistic systems (extended abstract),” in Sep. 2010, vol. 155, pp. 493–506, isbn:

1-4020-8140-5. doi: 10.1007/1-4020-8141-3_38.

[26] M. Althoff, M. Koschi, and S. Manzinger, “Commonroad: Composable benchmarks for

motion planning on roads,” in 2017 IEEE Intelligent Vehicles Symposium (IV), 2017,

pp. 719–726. doi: 10.1109/IVS.2017.7995802.

[27] H. J. Cho and M. Behl, “Towards automated safety coverage and testing for autonomous

vehicles with reinforcement learning,” ArXiv, vol. abs/2005.13976, 2020. [Online].

Available: https://api.semanticscholar.org/CorpusID:218971564.

[28] S. Jha, S. Banerjee, T. Tsai, et al., “Ml-based fault injection for autonomous vehicles:

A case for bayesian fault injection,” in 2019 49th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), 2019, pp. 112–124. doi:

10.1109/DSN.2019.00025.

[29] A. Corso, P. Du, K. Driggs-Campbell, and M. J. Kochenderfer, “Adaptive stress

testing with reward augmentation for autonomous vehicle validatio,” in 2019 IEEE

Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand: IEEE

Press, 2019, pp. 163–168. doi: 10.1109/ITSC.2019.8917242. [Online]. Available:

https://doi.org/10.1109/ITSC.2019.8917242.

[30] S. Feng, Y. Feng, X. Yan, S. Shen, S. Xu, and H. X. Liu, “Safety assessment of highly

automated driving systems in test tracks: A new framework,” Accident Analysis &

Prevention, vol. 144, p. 105 664, 2020, issn: 0001-4575. doi: https://doi.org/10.

53

https://doi.org/https://doi.org/10.1016/S1474-6670(17)42032-5
https://www.sciencedirect.com/science/article/pii/S1474667017420325
https://www.sciencedirect.com/science/article/pii/S1474667017420325
https://doi.org/10.1007/1-4020-8141-3_38
https://doi.org/10.1109/IVS.2017.7995802
https://api.semanticscholar.org/CorpusID:218971564
https://doi.org/10.1109/DSN.2019.00025
https://doi.org/10.1109/ITSC.2019.8917242
https://doi.org/10.1109/ITSC.2019.8917242
https://doi.org/https://doi.org/10.1016/j.aap.2020.105664
https://doi.org/https://doi.org/10.1016/j.aap.2020.105664

1016/j.aap.2020.105664. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0001457520302621.

[31] R. Zhang, D. Meng, S. Shen, et al., Evaluating roadside perception for autonomous

vehicles: Insights from field testing, 2024. arXiv: 2401.12392 [cs.RO].

[32] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An open urban

driving simulator,” Nov. 2017. [Online]. Available: http://arxiv.org/abs/1711.

03938.

[33] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-Vincentelli, and

S. A. Seshia, “Scenic: A language for scenario specification and scene generation,” in

Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design

and Implementation, ser. PLDI 2019, Phoenix, AZ, USA: Association for Computing

Machinery, 2019, pp. 63–78, isbn: 9781450367127. doi: 10.1145/3314221.3314633.

[Online]. Available: https://doi.org/10.1145/3314221.3314633.

[34] V. S. Babu and M. Behl, “F1tenth. dev-an open-source ros based f1/10 autonomous

racing simulator,” in 2020 IEEE 16th International Conference on Automation Science

and Engineering (CASE), IEEE, 2020, pp. 1614–1620.

[35] B. M. Bill Hoffman, Continuous testing drives innovation with drake robotics software,

2024. [Online]. Available: https://www.kitware.com/continuous-testing-drives-

innovation-with-drake-robotics-software/.

[36] How to build a ci/cd pipeline with github actions in four simple steps. [Online]. Available:

https://github.blog/2022-02-02-build-ci-cd-pipeline-github-actions-

four-steps/.

[37] M. Jiang, K. Miller, D. Sun, et al., “Continuous integration and testing for autonomous

racing software: An experience report from graic,” May 2021.

[38] Y. Li, H. Zhu, K. Braught, K. Shen, and S. Mitra, “Verse: A python library for reasoning

about multi-agent hybrid system scenarios,” in Computer Aided Verification, C. Enea

and A. Lal, Eds., Cham: Springer Nature Switzerland, 2023, pp. 351–364, isbn: 978-3-

031-37706-8.

54

https://doi.org/https://doi.org/10.1016/j.aap.2020.105664
https://doi.org/https://doi.org/10.1016/j.aap.2020.105664
https://www.sciencedirect.com/science/article/pii/S0001457520302621
https://www.sciencedirect.com/science/article/pii/S0001457520302621
https://arxiv.org/abs/2401.12392
http://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1711.03938
https://doi.org/10.1145/3314221.3314633
https://doi.org/10.1145/3314221.3314633
https://www.kitware.com/continuous-testing-drives-innovation-with-drake-robotics-software/
https://www.kitware.com/continuous-testing-drives-innovation-with-drake-robotics-software/
https://github.blog/2022-02-02-build-ci-cd-pipeline-github-actions-four-steps/
https://github.blog/2022-02-02-build-ci-cd-pipeline-github-actions-four-steps/

[39] R. R. Wiyatno, A. Xu, O. Dia, and A. de Berker, Adversarial examples in modern

machine learning: A review, 2019. arXiv: 1911.05268 [cs.LG].

[40] S. Mitra and D. Liberzon, Stability of hybrid automata with average dwell time: An

invariant approach, http://theory.lcs.mit.edu/˜mitras/research/cdc04-full.ps.gz.

[41] T. Dreossi, D. J. Fremont, S. Ghosh, et al., “VerifAI: A toolkit for the formal design

and analysis of artificial intelligence-based systems,” in 31st International Conference

on Computer Aided Verification (CAV), Jul. 2019.

[42] A. Anta, R. Majumdar, I. Saha, and P. Tabuada, “Automatic verification of control

system implementations,” in Proceedings of the Tenth ACM International Conference on

Embedded Software, ser. EMSOFT ’10, Scottsdale, Arizona, USA: ACM, 2010, pp. 9–

18, isbn: 978-1-60558-904-6. doi: 10.1145/1879021.1879024. [Online]. Available:

http://doi.acm.org/10.1145/1879021.1879024.

[43] N. Chan and S. Mitra, “Verifying safety of an autonomous spacecraft rendezvous mis-

sion,” in ARCH17. 4th International Workshop on Applied Verification of Continuous

and Hybrid Systems, collocated with Cyber-Physical Systems Week (CPSWeek) on

April 17, 2017 in Pittsburgh, PA, USA, 2017, pp. 20–32. [Online]. Available: http:

//www.easychair.org/publications/paper/342723.

[44] D. Reis, J. Kupec, J. Hong, and A. Daoudi, Real-time flying object detection with

yolov8, 2023. arXiv: 2305.09972 [cs.CV].

[45] D. Neven, B. D. Brabandere, S. Georgoulis, M. Proesmans, and L. V. Gool, “To-

wards end-to-end lane detection: An instance segmentation approach,” in 2018 IEEE

Intelligent Vehicles Symposium (IV), Changshu, Suzhou, China: IEEE Press, 2018,

pp. 286–291. doi: 10.1109/IVS.2018.8500547. [Online]. Available: https://doi.

org/10.1109/IVS.2018.8500547.

[46] C. Hsieh, Y. Li, D. Sun, K. Joshi, S. Misailovic, and S. Mitra, “Verifying controllers

with vision-based perception using safe approximate abstractions,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 11, pp. 4205–

4216, 2022.

55

https://arxiv.org/abs/1911.05268
https://doi.org/10.1145/1879021.1879024
http://doi.acm.org/10.1145/1879021.1879024
http://www.easychair.org/publications/paper/342723
http://www.easychair.org/publications/paper/342723
https://arxiv.org/abs/2305.09972
https://doi.org/10.1109/IVS.2018.8500547
https://doi.org/10.1109/IVS.2018.8500547
https://doi.org/10.1109/IVS.2018.8500547

[47] A. Angello, C. Hsieh, P. Madhusudan, and S. Mitra, “Perception contracts for safety

of ml-enabled systems,” in Proc. of the ACM on Programming Languages (PACMPL),

OOPSLA, 2023.

[48] D. Sun, B. C. Yang, and S. Mitra, Learning-based perception contracts and applications,

2023. arXiv: 2309.13515 [cs.RO].

[49] C. Hsieh, Y. Koh, Y. Li, and S. Mitra, Assuring safety of vision-based swarm formation

control, 2023. arXiv: 2210.00982 [cs.MA].

[50] C. S. Păsăreanu, R. Mangal, D. Gopinath, et al., “Closed-loop analysis of vision-based

autonomous systems: A case study,” in Computer Aided Verification, C. Enea and

A. Lal, Eds., Cham: Springer Nature Switzerland, 2023, pp. 289–303, isbn: 978-3-031-

37706-8.

[51] Z. Xu, Y. Sun, and M. Liu, “Icurb: Imitation learning-based detection of road curbs

using aerial images for autonomous driving,” CoRR, vol. abs/2103.17118, 2021. arXiv:

2103.17118. [Online]. Available: https://arxiv.org/abs/2103.17118.

[52] B. Tan, N. Xu, and B. Kong, “Autonomous driving in reality with reinforcement

learning and image translation,” CoRR, vol. abs/1801.05299, 2018. arXiv: 1801.05299.

[Online]. Available: http://arxiv.org/abs/1801.05299.

[53] S. Dean, N. Matni, B. Recht, and V. Ye, “Robust guarantees for perception-based

control,” in Learning for Dynamics and Control, PMLR, 2020, pp. 350–360.

[54] S. Dean, A. Taylor, R. Cosner, B. Recht, and A. Ames, “Guaranteeing safety of learned

perception modules via measurement-robust control barrier functions,” in Conference

on Robot Learning, PMLR, 2021, pp. 654–670.

[55] C. Dawson, B. Lowenkamp, D. Goff, and C. Fan, “Learning safe, generalizable

perception-based hybrid control with certificates,” IEEE Robotics and Automation

Letters, vol. 7, no. 2, pp. 1904–1911, 2022.

[56] G. Chou, N. Ozay, and D. Berenson, “Safe output feedback motion planning from

images via learned perception modules and contraction theory,” in International

Workshop on the Algorithmic Foundations of Robotics, Springer, 2022, pp. 349–367.

56

https://arxiv.org/abs/2309.13515
https://arxiv.org/abs/2210.00982
https://arxiv.org/abs/2103.17118
https://arxiv.org/abs/2103.17118
https://arxiv.org/abs/1801.05299
http://arxiv.org/abs/1801.05299

[57] T. Chen, J. Xu, and P. Agrawal, A system for general in-hand object re-orientation,

2021. arXiv: 2111.03043 [cs.RO].

[58] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using barrier

certificates,” in Hybrid Systems: Computation and Control, R. Alur and G. J. Pappas,

Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 477–492, isbn: 978-3-

540-24743-2.

[59] S. Prajna and A. Rantzer, “On the necessity of barrier certificates,” IFAC Proceedings

Volumes, vol. 38, no. 1, pp. 526–531, 2005, 16th IFAC World Congress, issn: 1474-6670.

doi: https://doi.org/10.3182/20050703-6-CZ-1902.00743. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1474667016367556.

[60] T. Badings, L. Romao, A. Abate, and N. Jansen, Probabilities are not enough: Formal

controller synthesis for stochastic dynamical models with epistemic uncertainty, 2022.

arXiv: 2210.05989 [eess.SY].

[61] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada,

“Control barrier functions: Theory and applications,” CoRR, vol. abs/1903.11199, 2019.

arXiv: 1903.11199. [Online]. Available: http://arxiv.org/abs/1903.11199.

[62] C. Dawson, S. Gao, and C. Fan, Safe control with learned certificates: A survey of

neural lyapunov, barrier, and contraction methods, 2022. arXiv: 2202.11762 [cs.RO].

[63] R. McAllister, Y. Gal, A. Kendall, et al., “Concrete problems for autonomous vehicle

safety: Advantages of bayesian deep learning,” in Proceedings of the Twenty-Sixth

International Joint Conference on Artificial Intelligence, IJCAI-17, 2017, pp. 4745–

4753. doi: 10.24963/ijcai.2017/661. [Online]. Available: https://doi.org/10.

24963/ijcai.2017/661.

[64] A. Graves, “Practical variational inference for neural networks,” in Advances in Neural

Information Processing Systems, J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira,

and K. Weinberger, Eds., vol. 24, Curran Associates, Inc., 2011.

[65] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, Weight uncertainty in

neural networks, 2015. arXiv: 1505.05424 [stat.ML].

57

https://arxiv.org/abs/2111.03043
https://doi.org/https://doi.org/10.3182/20050703-6-CZ-1902.00743
https://www.sciencedirect.com/science/article/pii/S1474667016367556
https://arxiv.org/abs/2210.05989
https://arxiv.org/abs/1903.11199
http://arxiv.org/abs/1903.11199
https://arxiv.org/abs/2202.11762
https://doi.org/10.24963/ijcai.2017/661
https://doi.org/10.24963/ijcai.2017/661
https://doi.org/10.24963/ijcai.2017/661
https://arxiv.org/abs/1505.05424

[66] Y. Gal and Z. Ghahramani, Bayesian convolutional neural networks with bernoulli

approximate variational inference, 2016. arXiv: 1506.02158 [stat.ML].

[67] M. Cleaveland, I. Ruchkin, O. Sokolsky, and I. Lee, “Monotonic safety for scalable and

data-efficient probabilistic safety analysis,” in 2022 ACM/IEEE 13th International

Conference on Cyber-Physical Systems (ICCPS), Los Alamitos, CA, USA: IEEE

Computer Society, May 2022, pp. 92–103. doi: 10.1109/ICCPS54341.2022.00015.

[Online]. Available: https://doi.ieeecomputersociety.org/10.1109/ICCPS54341.

2022.00015.

[68] A. Dosovitskiy, G. Ros, F. Codevilla, A. M. López, and V. Koltun, “CARLA: an

open urban driving simulator,” CoRR, vol. abs/1711.03938, 2017. arXiv: 1711.03938.

[Online]. Available: http://arxiv.org/abs/1711.03938.

[69] C. Fan, B. Qi, S. Mitra, and M. Viswanathan, “DRYVR: data-driven verification and

compositional reasoning for automotive systems,” CoRR, vol. abs/1702.06902, 2017.

arXiv: 1702.06902. [Online]. Available: http://arxiv.org/abs/1702.06902.

[70] I. Gog, S. Kalra, P. Schafhalter, M. A. Wright, J. E. Gonzalez, and I. Stoica, “Pylot:

A modular platform for exploring latency-accuracy tradeoffs in autonomous vehicles,”

in 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an,

China: IEEE Press, 2021, pp. 8806–8813. doi: 10.1109/ICRA48506.2021.9561747.

[Online]. Available: https://doi.org/10.1109/ICRA48506.2021.9561747.

[71] M. Jiang, K. Miller, D. Sun, et al., “Continuous integration and testing for autonomous

racing software: An experience report from graic,” IEEE ICRA 2021, International

Conference on Robotics and Automation, Workshop on OPPORTUNITIES AND

CHALLENGES WITH AUTONOMOUS RACING, doi: 10.13140/RG.2.2.28270.

33605. [Online]. Available: https://par.nsf.gov/biblio/10296575.

[72] V. Sukhil and M. Behl, “Adaptive lookahead pure-pursuit for autonomous racing,”

CoRR, vol. abs/2111.08873, 2021. arXiv: 2111.08873. [Online]. Available: https:

//arxiv.org/abs/2111.08873.

58

https://arxiv.org/abs/1506.02158
https://doi.org/10.1109/ICCPS54341.2022.00015
https://doi.ieeecomputersociety.org/10.1109/ICCPS54341.2022.00015
https://doi.ieeecomputersociety.org/10.1109/ICCPS54341.2022.00015
https://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1711.03938
https://arxiv.org/abs/1702.06902
http://arxiv.org/abs/1702.06902
https://doi.org/10.1109/ICRA48506.2021.9561747
https://doi.org/10.1109/ICRA48506.2021.9561747
https://doi.org/10.13140/RG.2.2.28270.33605
https://doi.org/10.13140/RG.2.2.28270.33605
https://par.nsf.gov/biblio/10296575
https://arxiv.org/abs/2111.08873
https://arxiv.org/abs/2111.08873
https://arxiv.org/abs/2111.08873

[73] A. AbdElmoniem, A. Osama, M. Abdelaziz, and S. Maged, “A path-tracking algorithm

using predictive stanley lateral controller,” International Journal of Advanced Robotic

Systems, vol. 17, p. 172 988 142 097 485, Nov. 2020. doi: 10.1177/1729881420974852.

59

https://doi.org/10.1177/1729881420974852

	List of Abbreviations
	Architecture of Autonomous Vehicles & Design Challenges
	Software Elements
	Perception Module
	Planner Module
	Controller Design

	Technical Challenges: Safety & Reliability
	Thesis Contribution: Continuous Testing & Controller Compensation

	Continuous Testing Pipeline for Autonomous Vehicles
	Design & Testing Techniques
	Planner & Controller Design
	Testing through Falsification
	Field Testing
	Vehicle Simulator
	Continuous Integration

	Design Choices of Continuous Testing Pipeline
	Submission Server
	Testing Server
	Database & Leaderboard Website

	Applications in Testing & Verification
	Controller Testing with GRAIC
	Decision Logic Verification with Verse

	User Experience
	Summary

	Controller Compensation for Unreliable Perception
	Overview on Perception Contract Methodology
	Related Work on Controller Design with Imperfect Perception
	Control compensation Problem
	Preimage of Perception Contract for Safe Control
	Perception Contracts M
	Preimage of Perception Contracts M-1
	Constructing PPC from data
	Risk Heuristic

	Case Study: Adaptive Cruising Control
	Autonomous Cruise Control Problem
	Construction of Preimage Perception Contract M-1
	Choice of Risk Function
	Result: PPC corrects 73% unsafe scenarios
	Result: Compensation Intervention are minimally evasive
	Result: PPC can be empirically constructed by BNN

	Summary
	Limitation

	Conclusions
	Future Work

	References

