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Abstract

Testing Automated Driving Systems (ADS) in simulation with realistic driving sce-1

narios is important for verifying their performance. However, converting real-world2

driving videos into simulation scenarios is a significant challenge due to the com-3

plexity of interpreting high-dimensional video data and the time-consuming nature4

of precise manual scenario reconstruction. In this work, we propose a novel frame-5

work that automates the conversion of real-world car crash videos into detailed6

simulation scenarios for ADS testing. Our approach leverages prompt-engineered7

Video Language Models (VLM) to transform dashcam footage into SCENIC scripts,8

which define the environment and driving behaviors in the CARLA simulator, and9

subsequently generate the simulation scenario. Additionally, we introduce a simi-10

larity metric that helps iteratively refine the generated scenario through feedback11

by comparing key features between the real and simulated videos. Our preliminary12

results demonstrate substantial time efficiency, finishing the real-to-sim conversion13

in minutes with full automation and no human intervention, while maintaining high14

fidelity to the original driving events.15

1 Introduction16

The rapid advancements in Automated Driving Systems (ADS) technology have created an urgent17

need for robust and realistic testing environments to assure reliability of ADS [1]. Real-world18

scenarios, such as crash videos and near-miss events, offer valuable insights into the diverse conditions19

ADS must navigate, making them an essential source for improving ADS testing. However, replicating20

these scenarios in real-world settings is both dangerous and impractical. Therefore, converting real-21

world driving videos into simulation scenarios is a necessary solution, but this process also poses22

several challenges: the high dimensional video data significantly limits the development of automated23

methods, while manually reconstructing these scenarios can take experts hours to complete. This24

time-consuming process underscores the need for a more efficient and automated approach.25

In this paper, we propose a novel framework that automates the conversion of real-world driving26

videos into detailed simulation scenarios. Our approach utilizes prompt-engineered Video-Language27

Models to transform dashcam videos into SCENIC scripts, enabling the automatic generation of28

realistic simulations in CARLA. Furthermore, we introduce a similarity metric that iteratively refines29

the generated simulations by comparing key driving features between the real and simulated videos.30

The contributions of this work are fourfold: (1) an automated video-to-simulation pipeline that31

removes the need for manual scenario construction, (2) a similarity metric that bridge the gap between32

real and simulated scenarios, (3) an iterative feedback loop for scenario refinement using neural33

network-based feedback from Video-Language Models, and (4) a significant improvement in time34

efficiency, reducing scenario generation from hours to minutes while maintaining high fidelity to the35

original events.36
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(a) ScriptGPT: A Video Language Model derived
from GPT-4o, developed through prompt engineering
with paired examples of simulation videos and their
corresponding descriptive SCENIC scripts.

(b) FeatureGPT: A Video Language Model derived
from GPT-4o, developed through prompt engineering
with paired examples of simulation videos and their
corresponding pre-defined features.

Figure 1: Train ScriptGPT and FeatureGPT using Prompt Engineering

2 Related Work37

Testing ADS in simulation environments has been the subject of extensive research [1]. Existing38

autonomous vehicle simulation platforms such as CARLA [2] and LGSVL [3] allow researchers to39

generate and manipulate driving scenarios in controlled environments. Efforts such as the SCENIC40

language [4] enables search-based testing(SBT) so that the generated scenario can be a seed for41

search based testing with respect to temporal logic requirements [5, 6], safe driving rules [7] and42

traffic laws [8]. However, accurately designing these scenarios to closely resemble real-world events43

remains a challenge.44

Recently, efforts have shifted toward automatic real-to-simulation (real-to-sim) conversion approaches45

that use video data to guide scenario generation. For instance, Bai et al. [9] introduced a system46

that extracts key information from videos to create driving scenarios in simulation environments. In47

[10], the authors automatically generate driving scenarios from police crash reports. Similarly, [11]48

focus on learning realistic human behaviors in real-life scenarios and use learned models to improve49

simulations. NVIDIA’s STRIVE [12] generates accident-prone driving scenarios by modifying 2D50

trajectories, but this method is based on controlled scenarios rather than real-world crash videos.51

Another approach, DEEPCRASHTEST [13], converts dashcam footage into crash tests by extracting52

3D vehicle trajectories but lacks an iterative refinement process to improve simulation accuracy.53

While these approaches represent meaningful progress, existing methods are either limited by a54

reliance on pre-defined trajectories or fail to incorporate iterative feedback to refine the generated55

scenarios. To address these gaps, we chose to use Video Language Models (VLM), as they allow for56

more flexible and scalable video-to-language translation, which can be enhanced through prompt57

engineering to generate detailed simulation scenarios.58

3 Real-to-Sim Scenario Generation Framework59

Given a real-life vehicle crash video (e.g., a dash camera recording), our objective is to generate a60

corresponding simulation scenario that accurately captures the core driving behaviors. Our framework61

consists of 4 components: (1) conversion of real-world video into SCENIC scripts, (2) generation of62

simulation videos from SCENIC scripts, (3) similarity analysis between the real and simulated videos,63

and (4) iterative refinement to ensure the simulated video’s consistency with the original scenario.64

3.1 Video-to-Text Generation65

First, we convert the input video into a descriptive script. This is accomplished using a prompt-66

engineered version of the pre-trained GPT-4o model.67
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Figure 2: After prompt engineering, the dash cam video is fed into ScriptGPT, which synthesizes descriptive
language in the SCENIC format. This SCENIC script can then be executed in CARLA to generate a correspond-
ing testing scenario in simulation.

Prompt engineering involves designing and refining input prompts to guide large foundational models,68

such as GPT-4o [14], toward producing accurate and desired outputs. In this case, prompt engineering69

is especially effective for generating detailed scenario descriptions (e.g., SCENIC scripts) from70

real-world driving videos. During the prompt engineering process, we improve the pre-trained GPT-71

4o model by providing it with multiple "positive-example" pairs (Vi, Si), where Vi is a simulation72

video generated in CARLA using the corresponding SCENIC script Si that describes the scenario,73

as illustrated in Figure 1a. Through this process, the new Video-Language Model, referred to as74

ScriptGPT, learns to map key visual elements, such as weather, road conditions, and vehicle behaviors,75

into structured and accurate scenario description languages. After sufficient prompt engineering,76

ScriptGPT is capable of generating a SCENIC script Sout for real-world crash video Vreal.77

Although the initial prompt engineering process was conducted using simulation videos paired with78

their SCENIC scripts, this approach is extendable to real-world driving videos because the underlying79

visual and descriptive patterns (e.g., road layouts, traffic behaviors, and environmental factors) are80

consistent across both domains, allowing the model to effectively generalize its learned capabilities81

and accurately capture real-world scenarios.82

3.2 Text-to-Video Generation83

We convert the descriptive language Sout to simulation video Vsim using SCENIC [4, 15]. SCENIC84

is a programming language tool designed for specifying driving scenarios through environmental85

factors, vehicle behaviors, and road conditions. Once we have the SCENIC script Sout generated from86

the real crash video using the prompted-engineered model, we feed it into the SCENIC framework87

to synthesize a simulation scenario in CARLA, as shown in Figure 2. The script Sout serves as the88

textual representation of the scene, encoding environmental conditions (e.g., weather, traffic), vehicle89

dynamics, and road types. The output is a new simulation video Vsim, which visually represents the90

scenario described in Sout.91

3.3 Similarity Check92

Next, we perform a similarity check on the simulated scenario Vsim and the original Vreal. Ideally,93

they should closely match, allowing us to seamlessly replace the ego vehicle with any ADS (e.g.94

Baidu’s Apollo planner [16] and controller) for testing. However, due to the complexity of real-world95

scenarios, even with prompt engineering, discrepancies often arise, where the generated simulation96

may miss key features or introduce extra ones.97

To address this, we introduce a similarity metric to ensure that the generated video captures the most98

important features from the original video. We predefine a set of crucial feature categories, such99

as the most critical and frequently encountered driving behaviors and environmental conditions, to100

examine the original crash video Vreal with the generated simulation Vsim. Then, we use another101

prompt-engineered transformer model, FeatureGPT (depicted in Figure 1b), to output a predicted102

probability (from 0 to 1) for each predefined feature category for a given video. Next, the similarity103

score, Sim(Vreal, Vsim), is calculated as a vector of differences between the predicted probabilities104

across the predefined categories:105

Sim(Vreal, Vsim) = [Creal1 − Csim1
, Creal2 − Csim2

, . . . , Crealn − Csimn
],

where Creali and Csimi
represent the predicted probabilities of Vreal and Vsim for feature i.106
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Figure 3: Iterative Refinement Process: After obtaining the simulated video Vsim from ScriptGPT and
SCENIC, both the original and simulated videos are fed into FeatureGPT to evaluate the probabilities of
predefined features. If the difference of any feature between the original and simulated videos exceeds a certain
threshold, we iteratively refine ScriptGPT by incorporating additional feedback into the SCENIC script, guiding
further scenario adjustments until the similarity improves.

3.4 Iterative Refinement107

Finally, we perform iterative refinement on the ScriptGPT with the help of similarity check, as108

illustrated in Figure 3. If the absolute difference for a given category i is above a predefined109

threshold τi, we refine the SCENIC script Sout by feeding the discrepancy for that category back110

into ScriptGPT as an additional prompt (e.g., "there shouldn’t be a leading vehicle overtaking111

behavior, please improve on that"). This feedback allows ScriptGPT to adjust the SCENIC script112

Sout accordingly, generating a new version of the script and producing a new simulation video Vsim′ .113

The process is repeated iteratively until the difference for each category falls below the predefined114

threshold, i.e., ∥Sim(Vreal, Vsim′)i∥ ≤ τi. Once the similarity across all categories pass the threshold115

check, the final simulation scenario is ready for testing ADS.116

4 Experiments & Analysis117

4.1 System Setup118

Dataset We obtain the collision videos from the Car Crash Dataset (CCD) [17]. CCD is chosen119

because it contains real traffic accident videos captured by dashcams mounted on driving vehicles,120

potentially providing a rich source for developing and testing ADS. Moreover, our framework is also121

relevant for near misses events.122

Simulator We use CARLA [2], an open-source platform designed to support the development and123

validation of autonomous driving systems. CARLA is selected for its realistic physics engine and124

high-fidelity environmental rendering, making it ideal for generating the simulation scenarios needed125

in our framework.126

Description Language SCENIC We use SCENIC as the description language for driving scenarios127

due to its similarity to Python, which aligns well with GPT-4o’s input data [14], making prompt128

engineering doable and more straightforward. Furthermore, SCENIC integrates seamlessly with129

the CARLA simulator and it is highly effective at specifying complex driving scenarios, making it130

well-suited for our application.131

Prompt-Engineered ScriptGPT To construct the ScriptGPT model, we begin by writing 20132

SCENIC scripts that cover diverse driving scenarios, such as overtaking, cruising, sudden stops due to133

obstacles, and turns in varying road and weather conditions. Using the SCENIC library and CARLA,134

we generate corresponding videos for each scenario and pair them with their respective SCENIC135
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scripts, forming 20 (Vi, Si) pairs. These pairs are then used as input data for prompt engineering136

GPT-4o, selected for its ability to learn and generalize from a wide range of examples.137

The empirical design choice we made is to design only 20 pairs because 20 scenarios are sufficient138

to cover most of the common interesting scenarios. Moreover, in practice, since GPT-4o API does139

not natively accept video formats like .mp4, we preprocess the videos by sampling frames and140

concatenating them into an n-dimensional array. The same preprocessing technique is applied during141

testing phases to ensure consistency between training and testing phases, and we also apply the same142

to the FeatureGPT.143

Prompt-Engineered FeatureGPT We use FeatureGPT to enhance our framework’s ability to144

recognize specific driving behaviors. First, we predefine 10 driving feature categories, as shown145

in Table 1. Next, we create 20 SCENIC scripts representing scenario videos where these features146

may or may not appear. Each video is paired with a corresponding 10-dimensional feature vector147

(e.g., [parallel vehicle overtaking: 0, ... , leading vehicle stopped: 1], where 0 indicates absence148

and 1 indicates presence). The input data is used to prompt-engineer GPT-4o into FeatureGPT,149

which outputs a 10-dimensional probability vector for each video during inference. This allows us to150

compare and categorize driving behaviors between the original video Vreal and the generated video151

Vsim. Again we made the empirical design choice of using 10 feature categories and 20 samples to152

cover most frequently encountered interesting driving behaviors through trial and error.153

Iterative Refinement using Similarity Check Once FeatureGPT produces feature vectors for both154

the generated and original videos, we compare them to detect discrepancies. A large discrepancy155

in any feature indicates that the generated video is either missing a key behavior (negative gap) or156

introducing an unintended one (positive gap), and then we map the gap into natural language feedback157

(e.g., "there should be a leading vehicle overtaking behavior, please improve on that") and feed back158

into ScriptGPT to refine the SCENIC script. Gap thresholds τi for each feature i, as shown in Table159

1, are customized through empirical testing.160

Table 1: Pre-defined feature Category and Threshold
Pre-define Feature Gap Threshold τ

Sunny / Rainy 0.3
Urban / Highway 0.3

Random Object on Road 0.1
Leading Vehicle Cruising 0.2
Leading Vehicle Stopped 0.2

Parallel Vehicle Cutting in 0.2
Parallel Vehicle Cruising 0.2
Parallel Vehicle Stopped 0.2

Behind Vehicle Overtaking 0.2
Opposite Vehicle Turning 0.2

4.2 Case Study161

We show 5 interesting dashcam video from the CCD dataset and generate the corresponding simulation162

scenario using our framework, as shown from in Figure 4, 5, 6, 7, 8.163
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Figure 4: Vehicle Cutting In with Pedestrian Crossing Scenario: in the original dash camera video (top row),
the vehicle on the right performs an emergency lane change to the left due to a jaywalking pedestrian in red. In
the generated scenario (bottom row) produced by our framework, the vehicle on the right exhibited a similar
lane change behavior to the left to avoid a jaywalking pedestrian.

Figure 5: Opposite Vehicle Invading Lane Scenario: in the original dash camera video (top row), the vehicle
on the opposite lane gradually swifts to ego’s lane probably due to loss of focus. In the generated scenario
(bottom row) produced by our framework, the vehicle on the opposite lane exhibited a similar lane change
behavior to switch to our lane and caused collision.

Figure 6: Vehicle Spin Scenario: in the original dash camera video (top row), the vehicle in front of the ego
first spins to the left and then collided into the right vehicle. In the generated scenario (bottom row) produced by
our framework, the front vehicle exhibited a similar spin and collision behavior
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Figure 7: Animal Crossing Scenario: in the original dash camera video (top row), an animal attempted to
cross the road, prompting the ego vehicle to perform an emergency lane change to the left. In the generated
scenario (bottom row) produced by our framework, the ego vehicle exhibited a similar lane change behavior to
the left to avoid a jaywalking pedestrian (since CARLA does not have an animal model, the animal is replaced
by a pedestrian).

Figure 8: Vehicle Cutting In with Stopped Object Scenario: in the original dash camera video (top row), the
vehicle on the right perform an emergency brake and tried lane change to the left due to a front parked vehicle.
In the generated scenario (bottom row) produced by our framework, the vehicle on the right exhibited a similar
lane change behavior to the left to avoid the stopped vehicle and cause a collision.

4.3 Preliminary Qualitative Result164

Automated Pipeline After completing the prompt engineering process, our framework is capable165

of automatically generating the 5 scenarios mentioned in Section 4.2 without any human intervention166

during the testing phase. We also extended our framework to evaluate 50 randomly selected accidents167

from the CCD dataset, and found that 32 out of 50 (64%) scenarios generation can be fully automated168

without any human involvement, while 18 scenarios (36%) encountered syntax errors that required169

human debugging.170

Time Efficiency Our framework significantly reduces the time required for real-to-simulation171

scenario generation. For the 32 videos that can be automatically generated, it takes 1.5 minutes per172

scenario on average during the testing phase, including iterative refinement, to produce a SCENIC173

script of approximately 70 lines of code. In contrast, manually coding and debugging a similar174

real-to-simulation scenario could take an experienced engineer several hours.175

Advantage of Iterative Refinement The 5 scenarios in Section 4.2 underwent 1-2 iterations176

of refinement, resulting in notable improvements in both accuracy and realism. In the extended177

evaluation of 50 accidents, iterative refinement happened in 17 scenarios (34%), further showcasing178

its potential to enhance scenario quality and be generalized to more crash scenarios.179

Framework Accuracy While we have not yet conducted a formal quantitative analysis on the180

framework’s timing efficiency or objectively measure benefits of iterative refinement, the preliminary181

results provide strong evidence of the concept’s validity. Our framework consistently captures the182

core driving behaviors from the original videos, indicating its effectiveness in generating accurate183

and realistic driving scenarios.184
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5 Limitations & Future Work185

Figure 9: Scenarios from the Car Crash Dataset where our current framework cannot handle due to heavy traffic
with multiple cars or compromised lighting environmental conditions at night

The current framework faces several challenges. It struggles with scenarios involving poor perception186

conditions or high complexity, as illustrated in Figure 9. Additionally, the framework’s performance187

may degrade when testing scenarios (e.g. multi-car complicated driving scenario at night like shown188

in Figure 9) have not been encountered by ScriptGPT and FeatureGPT during the prompt engineering189

process. Therefore, the performance of our framework heavily relies on carefully and manually190

selecting diverse "positive-examples" for prompt engineering.191

Another limitation is that both ScriptGPT and FeatureGPT operate as black-box neural networks192

affected by our prompt engineering with input data as a form of “training", providing two levels of193

indirection without any theoretical guarantees of performance or correctness. This lack of transparency194

can complicate the validation and debugging of generated scenarios.195

For future work, we plan to conduct a human study to quantitatively assess the framework’s time196

efficiency and accuracy. This will involve timing how long experts take to manually write real-to-197

simulation conversion scripts and asking them to rate the accuracy of our automated conversions. We198

also aim to improve the diversity of data samples used in the prompt engineering process to extend199

our framework’s applicability across the entire Car Crash Dataset. Finally, we envision extending200

this video-to-video conversion framework to other domains, such as flying tasks or other robotics201

applications, broadening its use cases and potential impact.202

6 Conclusion203

In this paper, we have presented a novel framework for automatically converting real-world vehicle204

crash videos into simulation scenarios using prompt-engineered Video-Language Models. We have205

deploy multiple techniques including the similarity score metric and the iterative refinement process206

to ensure the generated scenarios closely align with the original videos. Despite the framework’s207

current limitations, such as reliance on data diversity and the challenges of handling complex or208

unseen scenarios, through multiple examples, it demonstrates clear potential for improving ADS209

testing. Future work will focus on expanding data diversity, conducting quantitative human studies,210

and extending the framework to other robotics domains.211
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