
Correcting Learning-based Perception for Safety
1st Given Name Surname

dept. name of organization (of Aff.)
name of organization (of Aff.)

City, Country
email address or ORCID

2nd Given Name Surname
dept. name of organization (of Aff.)

name of organization (of Aff.)
City, Country

email address or ORCID

3rd Given Name Surname
dept. name of organization (of Aff.)

name of organization (of Aff.)
City, Country

email address or ORCID

Abstract—Learning-enabled perception is important in many
autonomous systems. Unlike traditional sensors, the boundary
where ML perception does or does not work is poorly character-
ized. Incorrect perception can lead to unsafe or overtly conser-
vative downstream control actions. In this paper, we propose a
two-step strategy for correcting ML-based state estimation. First,
an offline computation is used to characterize the uncertainties
resulting from the ML module’s state estimation, using preimages
of perception contracts. Second, at runtime, the a risk heuristic
is used to choose particular states from the uncertain estimates
to drive the control decisions. We perform extensive simulation-
based evaluation of this runtime perception correction strategy on
different vision-based adaptive cruise controllers (ACC modules),
in different weather conditions, and road scenarios. Out of 45
ACC scenarios where the original perception-based control sys-
tem using Yolo and LaneNet led to safety violations, in 73% of the
scenarios, our runtime perception correction preserved safety;
our method wouldn’t be able to recover 27% of the scenarios
where the construction of the preimages of perception contracts is
not fully conformant. Further, our runtime perception correction
strategy is not overly conservative—on the average only a 2.8%
increase in completion time is experienced in the corrected
scenarios, with mild interventions.

Index Terms—Autonoumous Vehicle, Safety, Learning-based
Perception, Cyber-Physical System

I. INTRODUCTION

Machine learning (ML) can play an important role in
the creation of cyber-physical and autonomous systems that
operate in complex environments. Inexpensive sensors coupled
with powerful pre-trained ML models can serve as an attractive
alternative to traditional sensing and state estimation methods.
At the same time, it is also well-known that ML models suffer
from fragile decision boundaries and adversarial examples [1].
Indeed, a major AI safety concern is the potentially out-sized
impact of this lack of robustness in safety critical applications.
On the other hand, for traditional control systems and cyber-
physical systems (CPS), there is a rich body of techniques for
model-based design and analysis of systems that are robust to
certain types of disturbances [2]–[5]. These methods provide
rigorous guarantees about safety, robustness, and stability, but
only in relatively structured environments and with simple
sensor models. In this paper, we explore the middle-ground
and aim to provide semi-formal safety guarantees for AI-
enabled CPS.

Consider a vision-based Autonomous Cruising Control
(ACC) system in which a vehicle (controller) relies on per-
ception for lane keeping and maintaining safe distance from

Fig. 1: Screenshot of simulation of Autonomous Cruise Control
(ACC) scenarios under different weather conditions. Under rain and
fog, ML-enabled perception designed to estimate crosstrack error and
distance to leading vehicles, can have larger errors. For example,
it cannot detect a vehicle in the the top-right scenario, and the
confidence score (labeled outside the orange box) for detecting nearby
vehicle is lower. Our approach corrects for such perception errors for
a family of controllers.

a leading vehicle. The perception module h (specifically
Yolo [6] and LaneNet [7] in this example) provides estimates
of distance to the leading vehicle (provided there is one)
and crosstrack error with respect to the lane center. The
vehicle controller g uses these observations or estimates to
compute the steering, throttle, and brake inputs for the vehicle
(see Figure 2). Setting aside the ML-based state estimator
h for a moment, we observe that the rest of this system is
a classical cyber-physical system (CPS). If only we could
assume that the state estimator were perfect h∗ or that it
came with reasonable error bounds, then a whole arsenal of
tools would become available for design and analysis: We
could get stability envelops using Lyapunov analysis, we could
compute invariants using reachability, and so on. However,
like other machine learning models, h as implemented in
Yolo and LaneNet do not have error specifications and is
fragile. Further, its output estimates depend on environmental
factors like lighting and weather in complex ways, which
can violate safety of ACC (see Figure 1). This near slip
from grasp motivates us to investigate the following problem:
Given a controller g that preserves some invariant R with
perfect perception h∗, and given a real perception module
h (implemented using ML and thus afflicted by fragility,

environment, lack of specs), can we modify or correct the
output of h so that the resulting system preserves the safety
invariant R. We call this the perception correction problem
and the formal statement appears in Definition 2.

We propose a solution to this problem using preimages of
perception contracts. A perception contract M [8], [9] bounds
the output of an ML-based state estimator as a function of the
ground truth state, so that it preserves a closed-loop invariant
such as R (see Definition 1). Different representations for per-
ception contracts have been proposed using piece-wise affine
set-valued functions [8] and decision trees [9]. Perception
contracts have been used to to verify a vision-based lane-
keeping system [8], automated landing for a drone [10], and
distributed formation flight [11]. A closely related notion of
weakest preconditions has been used to analyze vision-based
taxiing in the probabilistic setting [12]. While these ideas have
been fruitful for offline verification, at runtime, the ground
truth state is not available, and therefore, perception contracts
cannot be used for monitoring or for taking corrective actions.

Our proposed method uses the simple observation that
the preimage M−1 of a preception contract (PPC)—which
outputs the uncertainty in state given an input observation—
can be used at runtime. Specifically, if the set of states M−1(y)
corresponding to an observation y shows no risk of violating
the target invariant R, then no corrective action is needed.
On the other hand if M−1(x) could potentially compromise
safety, then some corrective action may be necessary.

Calculating the preimage perception contract (PPC) directly
is a complex task, and hence, we use a Bayesian Neural
Network (BNN) to construct the PPC based on data.

We then introduce a concept of risk, which defines a
monotonous function relative to the safety property across
different states. Our proposed risk heuristic, guides control
actions by prioritizing the states within the inferred uncertain
set that pose the highest level of risk, as illustrated in Figure 3

By integrating the correction module at runtime, we were
able to effectively recover 33 out of the 45 unsafe scenarios,
resulting in a 73% recovery rate. It is important to note that
our inability to address all unsafe scenarios may be attributed
to conformance violations during the empirical construction
of the preimage perception contract (PPC) from data.

Additionally, our evaluations demonstrate that the interven-
tion of the module is minimal and does not impose excessive or
overly conservative control measures. In fact, our experiments
reveal only a 2.8% increase in the time required to complete
tasks when our module is integrated.

In summary, our approach to addressing the runtime per-
ception correction problem involves the incorporation of the
preimage perception contract (PPC) and a risk heuristic into
the existing closed-loop system. Initial findings have yielded
promising results, indicating that this method is effective in
enhancing the system’s safety.

II. RELATED WORK

With the emergence of increasingly sophisticated sensors,
such as cameras, LiDAR, and radar, coupled with the de-
velopment of advanced perception algorithms, the issue of
seamlessly integrating these sensors and their associated ma-
chine learning-based algorithms into the controller pipeline
has become a prominent subject of research. In recent studies,
innovative methods like imitation learning [13] and rein-
forcement learning utilizing RGB cameras [14] have been
introduced to tackle the challenge of vision-based control for
autonomous vehicles. However, it’s important to note that
these approaches are data-driven, and they do not effectively
characterize or bound the potential errors in perception, which
ultimately limits their capacity to guarantee safety.

Recent research efforts have been primarily directed towards
ensuring safety through vision-based control. In the work
by Dean et al. [15], the authors synthesized a vision-based
controller for autonomous vehicles and carried out theoretical
analyses to establish a robust safety guarantee. However,
their approach involved simplifying the vehicle model to
a linear one. In a subsequent study, as presented in [16],
the author proposed a Measurement-Robust Control Barrier
Function (MR-CBF) that incorporates an optimization method
for synthesizing a safe controller. Dawson et al. [17] fo-
cused on working with high-dimensional sensors like LiDAR.
They proposed a method for learning a control Lyapunov
function (CLF) and a control barrier function (CBF) within
the observation space, without making assumptions about the
perception module. Additionally, in the work by Chou et al.
[10], authors use the concept of perception contract to design
a controller for a safe landing problem. [18], the authors
designed a neural network-based perception module capable of
outputting a set of potential states. Subsequently, they applied
contraction theory and robust motion planning algorithms to
synthesize a robust and safe vision-based controller. This work
is closely related to our research; however, our approach
involves generating a set of potential states by learning the
behavior of a black-box perception model, in contrast to their
method, which has to constructs such set of potential states
while designing the perception model from data.

III. RUNTIME PERCEPTION CORRECTION

In this section, we introduce the different parts making
up the perception-based control system and then define the
runtime perception correction problem.

A. Perception-Based Control System

The closed-loop system, comprises of three components: the
plant with dynamics f , the controller g, the learning-based
perception module h.

Plant dynamics: The state of the physical part of the system
is denoted by vector x ∈ X ⊂ Rn, where X is called the state
space. We denote by x[i] the ith component of x. For example,
for an autonomous vehicle, the state vector x may include its
position, velocity, heading, distance to front vehicle, etc.

System-level safety requirements are given in terms of a set
of unsafe states, Unsafe ⊂ X , that the overall system must
stay away from. The set of safe states, Safe = X \ Unsafe ,
is the complement of the unsafe states.

Example 1. Consider a vehicle (ego) following curvy lanes
on a highway with objective of ensuring that the vehicle stays
within its lane and does not deviate. The state vector is defined
by valuations of several variables: {pE , vE , θ, dL}, where
pE is ego vehicle’s pose (position and heading), vE is ego
vehicle’s velocity, θ is the angle between ego’s heading and the
lane’s heading, dL is vehicle’s cross-track error with respect to
the center of the lane. Since the vehicle enters an unsafe state
when a lane departure occurs, then we can define the unsafe
states as a set, Unsafe = {(pE , vE , θ, dL) : |dL| ≥ L

2 }, where
L is the lane width.

The evolution of the plant state is described by a dynamic
function f : X ×U 7→ X , where U is the control input space.
In Example 1, the control inputs for the vehicle are throttle
t ∈ [0, 1], brake b ∈ [0, 1], and steering s ∈ [−1,+1], here −1
stands for the maximum left steering input and +1 stands for
maximum right steering. Given a state x ∈ X and an input
u ∈ U , the next state of the vehicle xt+1 = f(xt, ut).

Perception and control: The method developed in this paper
targets systems in which the control input u is computed in
two stages: first, a perception module h interprets the signals
generated in state x via sensors to produce an observation
y ∈ Y , and then, the controller g : Y → U takes as input this
observation y and computes the control input (for the plant).
A diagram is shown in Figure 2. In Example 1, h could output
cross-track-error dL as the observation y, and the controller
could applies a hard brake whenever the dL is above some
threshold.

The perception module h generates observation y from the
actual plant state x. We name a perfect observer h∗ : X 7→ Y .
In Example 1, if x is known, the observation y (cross-track
error dL) can be directly obtained from x by dropping the extra
state components and retaining dL as observation. However, in
most autonomous systems, usually state information x cannot
be directly obtained. Therefore we rely on an observer h,
which encapsulates the behavior of the sensors that generate
the raw signals (e.g., images, LIDAR returns) as well as the
algorithms (e.g., machine learning models, filters), to generate
the observation y from those signals. The signals also critically
depend on certain environmental factors (e.g., lighting, fog,
rain, etc.). The space of all possible such environmental
conditions is denoted by E . Thus, the perception module is
modeled as a function h : X × E → Y . In Example 1, to
achieve the lane following task, ego vehicle needs to first rely
on the camera sensor to generate an RGB image. Then the
analysis of this image is done using a ML algorithm (E.g.
LaneNet [7]), to produce lane information and subsequently
cross-track-error dL.

There are several reasons for this two-stage architecture for
the computation of u. First, from the control theory point of
view, it is standard to think of the whole pipeline as the

composition of a state estimator (h) and a controller (g).
Loosely speaking, the certainty equivalence principle assures
that the optimality of controller design can be preserved
by this decomposition, under appropriate assumptions. The
access to privileged state information, like the observables,
have also been noted to benefit the development of reinforce-
ment learning-based controllers [19]. Identifying all possible
environmental factors that influence h can be a complex
problem. This work is based on the premise that domain
experts prescribe the dominant factors in E with respect to
which runtime perception correction should be applied.

Closed-loop system: The discrete time evolution of the
closed-loop system or simply the system S, in an environment
e ∈ E , as shown in Figure 2, is given by the following:

xt+1 = f(xt, g(h(xt, e)). (1)

An execution in an environment e, is a sequence of states
α(e) = x0, x1, . . . , such that for each t, xt+1 and xt

satisfy (1). With respect to an unsafe set Unsafe , the system
S is safe over an environment E′ ⊆ E and a set of initial
states X0 ⊆ X , if for each e ∈ E′ and x0 ∈ X0, none of the
states in α(e) are in Unsafe , i.e., the reachable states of S are
disjoint from Unsafe .

Definition 1. A control invariant set R ⊆ X for the system S
is a set such that:

1) R ⊆ Safe
2) ∀x ∈ R, ∃u ∈ U s.t. f(x, u) ∈ R.

There has been substantial progress in computing the control
invariant sets for systems. Notable techniques include barrier
certificates [20], [21], formal controller synthesis [22], con-
trol barrier functions [23], and more recently neural barrier
functions [24]. These techniques vary in terms of the levels
of knowledge needed about f, g, h, their computational com-
plexity, and the level of formal guarantee that they provide.
However, our system S includes learning-enabled perception
h, which depends on the environment in complex ways, and
therefore, some of the existing techniques will not be directly
applicable. Instead, our sufficient condition for proving safety
of the overall system is based on using control invariant
sets for an idealized controller-observer pair g∗, h∗. In the
two-staged observer-controller design paradigm, it is indeed
common for the controller design to assume that the observer
is at least asymptotically correct. The following codifies this
assumption about such an idealized observer-controller pair.

Assumption 1 (Safety with perfect observer-controller). There
exists a perfect observer h∗ : X → Y and controller g∗ : Y →
U pair for a given safe invariant set R ⊆ Safe . That is, for
any x ∈ R, f(x, g∗(h∗(x)) ∈ R.

B. Runtime Perception Correction Problem

Due to environmental uncertainty, sensor noise, and inac-
curacies in the Deep Neural Network, the observation h(x, e)
may not be accurate and deviate from h∗(x), which could lead
to unsafe conditions (e.g., incorrect lane detection causing lane

invasion in foggy conditions). As a result, in certain cases,
even though the system has a safe controller under perfect
perception (Assumption 1), there’s no guarantee the system is
safe with the neural-network based perception module h.

Definition 2 (Runtime perception correction problem).
Given:
• a perfect observer-controller pair g∗, h∗ and a corre-

sponding control invariant set R that proves safety of
the closed-loop system S with respect to Safe .

• an actual (learning-enabled) observer module h that
depends on environment factors in E .

The objective is to synthesize a controller ĝ : Y 7→ U such
that ∀x0 ∈ X0, e ∈ E0, the new closed loop system with h, g
is safe.

In addition, to ruling out trivial solutions (e.g., always brake
and stop), we have a soft-requirement that the new system
with g and h should be minimally invasive over S. Metrics
for invasiveness are not straightforward to define, and we will
consider some examples in Section V.

IV. METHODOLOGY

Our idea for solving the above problem involves two stages:
the first stage infers the uncertainty in the state of the system
at runtime from the observations, and the second stage takes
control action based on the riskiest states in inferred uncertain
set. For reasons that will become clear below, the first stage is
called Preimage of a Perception Contract (PPC) and the latter
is called a risk heuristic. The difficulty of inferring the uncer-
tainty in the actual state from observations is addressed using
using the recently invented notion of perception contracts

A. Preimages of Perception Contracts

Safety analysis of machine learning-enabled and perception-
based control systems is hard since we do not have spec-
ifications for the ML modules. Specification are not only
necessary for formal verification, but they form the basis
for modern, large-scale software engineering by enabling unit
tests, modular design, and assume-guarantee reasoning. In [8],
[9] the authors introduce the notion of perception contracts for
addressing this problem. A perception contract M for an actual
perception module h, in the context of a closed loop system
S, and its control invariant set R, captures two ideas: First, M
is an over-approximation of h, over at least some part of the
relevant environment space E . This is called the conformance
of the contract. Second, M preserves system-level correctness
of S with respect to R. That is, if M is plugged-in to S, then
the resulting closed-loop system, SM , should R.

Definition 3. For a given perception module h : X × E →
Y , an invariant set R ⊆ X , and an environment E ′ ⊆ E , a
perception contract is a map M : X → 2Y that satisfies the
two conditions:

1) Conformance: ∀x ∈ R, e ∈ E′, h(x, e) ⊆ M(x).
2) Correctness: ∀x ∈ R, f(x, g(M(x)) ⊆ R.

Fig. 2: This is the block diagram of the closed loop system
S, which is mathematically described in Equation 1

In the previous works, the authors have shown that it is
possible to construct such contracts from data for vision-based
lane keeping systems and for automated landing systems.
The constructed contracts can indeed be used to rigorously
prove system-level safety (e.g., car does not leave the lane
boundaries). In [8], for example, M(·) is a piece-wise affine
set-valued function constructed from data, and the correctness
condition is verified using program analysis. Owing to the
complexity of the actual perception pipeline h and its complex
dependence on the environment E, the conformance property
is empirically validated based on input-output data.

B. Preimage of Perception Contracts M−1

Inspired by perception contracts, in this work we explore
how such contracts can be used at runtime to possibly correct
perception errors. The challenge we face is that the ground
truth state x is not available at runtime to use M(x), even
though, M(·) is computed offline. Our key idea is to use the
preimage of perception contracts, that is, M−1 : Y → 2X .
Conceptually, for a given observation y ∈ Y , its preimage
M−1(y) gives the set of all possible states that could generate
y, in some environment E ′.

For a given perception contract M : X → 2Y we define
M−1 : Y → 2X as M−1(y) := {x | y ∈ M(x)}. It follows
that, if that for any realizable y ∈ Y, if observer function h
conforms to M over E ′, then h−1(y) ⊆ M−1(y).

Proposition 1. Consider any realizable observation y ∈ Y ,
such that there exists x ∈ X , e ∈ E ′ with h(x, e) = y. If h con-
forms to the perception contract M , then h−1(y) ⊆ M−1(y).

Proof. Follows from the definitions. Consider any realizable
y ∈ Y and let h−1(y) := {x | ∃e ∈ E ′, h(x, e) = y}. Consider
any x ∈ h−1(y). Since, h conforms to M over E ′, h(x, e) =
y ∈ M(x), for some e ∈ E ′. By definition of M−1, then
x ∈ M−1(y).

C. Risk Heuristic

We introduce a notion of risk which defines a monotonic
function over states with respect to the safety property. A
similar notion “Monotonic Safety” was used in [25] to remove
the uncertainty of non-deterministic models for Statistic Model
Checking.

Fig. 3: This is the block diagram of the new closed-loop system
SMJ with our runtime perception correction module from y
to ŷ, which is mathematically described at Equation 3

Definition 4. For a given control invariant set R ⊆ X , a risk
function J : X 7→ R≥0 assigns a real value to each state such
that for any two safe states x1, x2 ∈ Safe , if J(x1) ≥ J(x2)
and there exists an R-preserving control ū ∈ U for x1, then
ū also preserves R for x2, that is, f(x2, ū)) ∈ R.

Informally, if a more risky state preserves the invariant R,
then a less risky state also preserves the same invariant by
taking the same control action. In Examaple 1, consider the
ego vehicle following lanes on curvy highway and two states
x1=(pE1, vE = 5, θ = 0, dL = L

2), x2=(pE2, vE = 5, θ =
0, dL = 0), and a risk function J(x) = |dL|, which measures
the risk as distance to lane center. It’s obvious that J(x1) ≥
J(x2) since x1 is on the lane boundary while x2 is in the lane
center, and if the next state of x1 with full throttle u = (t =
1, b = 0, s = 0) under dynamics is in R, then x2 with the
same full throttle control will also stay in R.

Using the risk heuristic J , we can define a corresponding
function CJ that chooses the riskiest state from the intersection
of the PPC M−1 and the invariant set R. Here we take the
intersection because, according to definition 1, states outside
R cannot guarantee the existence of control values that will
preserve the invariant set R.

CJ(M
−1(y)) = argmax

x∈M−1(y)∩R

J(x). (2)

Finally, we apply the perfect observer h∗ and subsequently
the control function g to the state returned by Cj(M

−1(y))
to compute the control input to the plant. The evolution of
the resulting corrected closed-loop system SMJ is given by
(shown in Figure 3):

xt+1 = f(xt, g(h
∗(CJ(M

−1(h(xt, e)))))). (3)

We claim that SMJ indeed preserved the safety invariant R
provides h conforms to M , and therefore, solves the runtime
perception correction problem.

Theorem 1. Given a preimage of a perception contract M−1

for the actual perception function h such that h conforms to
M and a risk heuristic J for R, the corrected system SMJ

described by Equation (3) preserves the invariant R for E ′ ∈
E .

Proof. Consider any xt ∈ R to be the input of h. From
Proposition 1, we know that for any xt ∈ X , e ∈ E ′ with
h(xt, e) = y, if h conforms to the perception contract M , we
have

xt ∈ M−1(h(xt, e))

Since xt ∈ R then M−1(h(xt, e))∩R ̸= ∅. From Equation 2,
we have the output of the heuristic function, calling it x̂,
satisfying

x̂ = CJ(M
−1(h(xt, e))) ∈ (M−1(h(xt, e)) ∩R) ⊆ R.

From Assumption 1, since x̂ ∈ R, we know that there exists
g such that

f(x̂, g(h∗(x̂)) ∈ R.

From Equation 2, since x̂ is chosen to maximize the Risk
Function J within (M−1(y) ∩ R), then J(x̂) ≥ J(xt). From
Definition 4, we hence have that

xt+1 = f(xt, g(h
∗(x̂)) ∈ R ⊆ Safe

thus concluding the proof.

D. Constructing PPC from data

Ideally, PPC should achieve perfect conformance, i.e.,
Proposition 1 should always hold. However, this perfect con-
formance requirement of PPC might be too strong for real
autonomous system involving perception. In this paper, instead
of directly learning M−1 from M , we propose a method to
empirically learn a PPC from data using Bayesian Neural
Network(BNN).

Let dataset D := {(yi, (xi, ei))}, where yi is the input
data, (xi, ei) is the output label. Traditional neural networks
output a point estimate for a given input, that is, they produce
one deterministic value (or vector of values) given an input
vector, i.e. (x, e) = fθ∗(y), where f is the neural network
parameterized by a deterministic optimal θ∗, and θ∗ in practise
is obtained by conducting gradient descend to minimize the
loss function.

θ∗ = argmin
θ

∑
(xi,ei,yi)∈D

L(fθ(yi), (xi, ei))) (4)

A Bayesian Neural Network(BNN), in contrast, produces
a distribution over possible outputs for an input vector, since
the parameters of the BNN are also random variables, i.e.
x̃, ẽ = fθ̃(y) where x̃, ẽ, θ̃ are both random variables. This
probabilistic approach allows for the modeling of uncertainty,
which can be essential in many applications, especially when
decisions based on the output have significant implications,
like in autonomous driving [26].

In this paper, we use a specific kind of BNN, where the prior
distribution of the BNN weights follow a Gaussian distribu-
tion, i.e., θ ∼ N (µ,Σ), the optimal weights are parameterized
by µ∗,Σ∗. Similarly to traditional neural networks, in practice,

the optimal weight is found by doing gradient descend on the
loss function.

µ∗,Σ∗ = argminµ,Σ
∑

(xi,ei,yi)∈D L(fθ(xi, ei), yi)−KL(p(θ), p(θ0))

(5)
where θ0 is a normal distribution, i.e., θ0 ∼ N (0, 1). The
KL divergence is added to to the loss function to prevent
the weight from drifting away from normal distribution. We
use a Gaussian distribution as a prior for weight of the
BNN, because the Gaussian prior acts as a natural form of
regularization to avoid overfitting, and have been used as a
common techniques in training the BNN. [27]–[29].

During the inference time of the BNN, we can get a set of
x̂, ê given y, simply by sampling the querying the trained BNN
N times. We include both x and e in the during training to
increase the training accuracy. But for the runtime perception
correction problem, we only need to infer for x, so we will
drop the e dimension when making up M−1 as follows:

M−1((y) = {xi|(xi, ei) ∼ fθ∗(y)}Ni=1 (6)

V. AUTONOMOUS CRUISING CONTROL

In this section, we introduce the details of an autonomous
cruise control system (ACC) which we will analyze in Sec-
tion VI.

A. Autonomous Cruise Control Problem

The driver assistance feature we study is a combination of
lane keeping and adaptive cruise control. Similar autonomy
features commercially go by other names such as AutoPilot,
Travel Assist, AutoCruise, etc. In typical operation, the ego
vehicle moves at a set speed behind a lead vehicle. Both vehi-
cles follow (possibly curving) lanes. If the lead vehicle slows
down then the ego vehicle has to maintain safe separation. The
ego vehicle’s autonomy pipeline uses vision-based perception.
We explore three lane configurations: Track 1, a lane with left
curve; Track 2, a lane with right curve; Track 3, a straight
lane.

The state of the whole system includes (pE , pF , vE ,
vF , θ, dL, dF), where pE , pF are the pose (position and head-
ing) of the ego vehicle and the leading vehicle respectively,
vE , vF are the velocity of the ego vehicle and the leading vehi-
cle respectively, θ is the angle between ego’s heading and the
lane’s heading, dL is ego vehicle’s distance to lane center(also
known as cross track error), dF is ego’s distance to the leading
vehicle. The unsafe set is defined as states where the ego
vehicle is out of the lane boundaries or there is a collision, i.e.
Unsafe = {(pE , pF , vE , vF , θ, dL, dF)|dL ≥ L

2 ∨ dF ≤ W},
where L is the lane width and W is the vehicle length. The
observations given by sensors and ML-based perception will
consist of (θ, dL, dF), which have the same meaning as the
state variables with the same names above.

We use CARLA [30] to create and run the scenarios.
CARLA is an open-source platform designed specifically to
support the development and validation of autonomous driving

systems. For the ego vehicle and the leading vehicle, we use
the Carla built-in Tesla Model 3 vehicle’s dynamics. We use
a reachability tool [31] to approximate the invariant R.

A key advantage of CARLA lies in its ability to create
realistic and diverse real-world scenarios, as well as different
weather conditions (ranging from clear skies and rain to
fog and snow) that could affect the sensor readings. During
runtime testing, we consider six weather conditions ranging
from demanding environments such as late night, heavy fog,
and rain to clear skies (optimal driving conditions): Weather 1
to 5 represent decreasing levels of fog and rain, with Weather 6
characterized by clear skies. We intentionally chose 5 extreme
weather conditions to assess their impact on perception h.

Perception h: We use two learning-based perception
module to detect the front vehicle and the lane: YOLO v8n [6]
and LaneNet [7]. YOLO v8n, an evolution of the ’You Only
Look Once’ series, is utilized for its swift and accurate object
detection capabilities, particularly for identifying front leading
vehicles. It’s known for offering high detection accuracy while
ensuring minimal latency. On the other hand, LaneNet is
employed specifically for its prowess in lane detection. This
architecture combines semantic segmentation with instance
segmentation to precisely distinguish between individual lane
lines, even in challenging conditions. Together, YOLO v8n
and LaneNet form a routine perception backbone, ensuring our
autonomous vehicle is consistently aware of its surroundings,
which is also a commonly adopted by the research community
for autonomous vehicle systems [32]. The two modules will
output location of leading vehicle and lanes in the camera
frame. Together with a depth camera and the known intrinsic
and extrinsic matrix of the camera sensor, we can get the
observation y := (θ, dL, dF). We fine-tuned the two models
on a customized Carla image dataset.

Controller g: We experiment with 3 lateral and 1 longitu-
dinal controller. The controllers are implementations of racing
controllers submitted by leading participants of the GRAIC
competition [33]. All controllers take the same observations,
and produce the control values, namely throttle, brake and
steering.

The lateral controllers we have from GRAIC are a modified
verison of Pure Pursuit [34], a modified version of Stanley [35]
and a simplified kinematic steering control. The Pure Pursuit
algorithm computes the required steering angle based on the
vehicle’s lookahead distance; the Stanley controller computes
the steering based on the vehicle’s orientation relative to the
path and cross-track-error; the simplified kinematic steering
control uses simple geometric solution to the path-following
problem.

For longitudinal control, we utilize a PID controller, de-
signed to maintain a constant vehicle speed with high pre-
cision. In scenarios demanding instant decisions, such as
potential collisions, we incorporate the Responsibility Sensi-
tive Safety (RSS) formula. This ensures the vehicle brakes
promptly and safely, taking into account both the vehicle’s
dynamics and the surrounding environment.

The vehicle controller g is a combination of both lateral

control and longitudinal control. We name the combination
of Pure Pursuit and PID Controller C1, the combination of
Stanley and PID C2, the combination of kinematic control
and PID C3.

The combination of three road geometries, six set of
weather, and three controllers define 54 different ACC scenar-
ios. Each scenario can be modeled as a closed loop system S
satisfying Equation (1) if we are using perception h. Moreover,
each scenario can also be modeled as a new closed loop system
SMJ satisfying Equation (3) if we use both perception h and
our runtime perception correction (M−1, CJ , h

∗).

VI. EXPERIMENTAL EVALUATION

We apply runtime perception correction to the ACC scenar-
ios described above and have following observations.

A. Construction of Preimage Perception Contract M−1

To obtain training data for generating preimage perception
contract, we run a safe controller across 20 sets of different
weather conditions and 3 different lane configurations to col-
lect pairs of ground truth states x and observation y = h(x, e).
We run the controller for 3 hours and collect 5k set of such
pairs to make up the dataset D = {(yi, (xi, ei))}, where yi is
the input feature, and (xi, ei) is the output label.

We divide the dataset into 80% training dataset, and the
rest 20% for validation, as this is a common practice in neural
network training. We trained the data for 3000 epoches with
batch size 32 on a BNN, discussed at Section IV-D. The BNN
has 3 hidden layers with 32, 128, 16 neurons respectively. We
assume the prior distribution of each layer’s weights follow a
Gaussian distribution N (0, 0.3), we use learning rate 0.01.

B. Choice of Risk Function

The high-level idea behind the specific risk function J :
X 7→ R≥0 we chose in this case study is that the closer the
vehicle is to unsafe state, the more risk the state will have.
This function is monotonically increasing with respect to the
inherent risk of the state.

We define the risk as the L∞ norm of the weighted inverse
of the distance to the unsafe region, taken over each dimension
of the state space.

J(x) =

∥∥∥∥∥∥∥∥∥∥

w1

x[1]−xu[1]
w2

x[2]−xu[2]

...
wn

x[n]−xu[n]

∥∥∥∥∥∥∥∥∥∥
∞

(7)

where xu = (0, 0, π
2 ,

L
2 ,W) is the unsafe boundary for

the state variables (vE , vF , θ, dL, dF) and the corresponding
weight w = (0, 0, 0.2, 0.4, 0.4). We choose xu to assign high
risks to vehicle states where it’s too close to the leading vehicle
(i.e. dF = W is where collision will happen) or cross track
error is too high (i.e. dL = L

2 is where out-of-lane will happen)
or heading error is too large(i.e. θ = pi

2 is where ego is
almost perpendicular to the lanes). w is carefully chosen after
empirically tryouts to satisfy Definition 4.

Track 1 Track 2 Track 3
Scenarios h M−1 h M−1 h M−1

Weather 1
C1 X X X X X X
C2 X X X ✓ X ✓
C3 X ✓ X ✓ X ✓

Weather 2
C1 X X X ✓ X ✓
C2 X ✓ X ✓ X ✓
C3 X ✓ X ✓ X ✓

Weather 3
C1 X X X X X X
C2 X X X ✓ X ✓
C3 X ✓ X ✓ X ✓

Weather 4
C1 X X X X X ✓
C2 X X X ✓ X ✓
C3 X ✓ X ✓ X ✓

Weather 5
C1 X ✓ X ✓ X ✓
C2 X ✓ X ✓ X ✓
C3 X ✓ X ✓ X ✓

Weather 6
C1 ✓ ✓ ✓ ✓ ✓ ✓
C2 ✓ ✓ ✓ ✓ ✓ ✓
C3 ✓ ✓ ✓ ✓ ✓ ✓

TABLE I: Safety evaluation under a variety of road conditions,
weather and controllers. ”X” indicates unsafe scenarios while
”✓” signifies ego can finish the scenario safely

C. Runtime Perception Correction corrects 73% unsafe sce-
narios

We first ran ego with perfect observer h∗ (i.e., ground truth
observation provided by Carla simulator), and all 54 scenarios
result in safe execution, which indicates that Assumption 1
holds for the three controllers we have. Next, we ran ego with
perception module h on the same 54 scenarios. We discovered
that, ego safely finished 9 scenarios while the rest 45 scenarios
resulted in an unsafe finish (e.g., either a collision with the
front vehicle or steering out of lanes). Last, we ran the ego with
h complemented by our runtime perception correction module
(M−1, CJ , h

∗), and we see that our method maintains safety
in 9 scenarios where using h alone is safe; furthermore, it can
recover 33 out of the 45 (73 % recover rate) unsafe scenarios
in which h failed. We looked into the log of 12 scenarios
where our approach cannot recover, and we noticed that it’s
due to that h−1 does not fully conform to the constructed
PPC from data(i.e. x = h−1(y) /∈ M−1(h(x, e)) for some
x ∈ X , e ∈ E ′ in these 12 scenarios) , which violated the
conformance assumption of Theorem 1 and thus safety can
not be guaranteed. Detailed results are provided in Table I.

D. Correction Intervention are few

While the runtime perception correction module helps to
maintain safety, it can also be integrated without inducing
overly unnecessary behaviors, such as frequent stops or exces-
sive adjustments. We look at the he vehicle’s steering profile
of one particular example(Track 1, Weather 6, C3) in Figure 5.
We noticed that most of the time, our runtime perception cor-
rection results in a similar steering value as ones produced by
the perfect observer h∗. Most of the time, runtime perception
correction module does not result in unnecessary movement
except for timestamp 270 to 280, where the curvature of the
map slightly increase and our PPC captures a large uncertainty
in perception errors, thus results in a large control value.

(a) (b)

Fig. 4: The two graphs show PPC’s prediction on one of the state dimension(distance to front vehicle dF). Red dot indicates
ground truth distance given by h∗, while green dots indicate observed distance given by h. Shaded area represented the
constructed PPC M−1

.

Fig. 5: Vehicle’s steering profile on one particular scenario.

Given the large number of experiments, analyzing each
scenario by directly comparing control values can be both
time-consuming and potentially misleading due to temporal
shifts in these values. As such, we employ a more informative
quantitative metric – time to finish the scenario, which helps
in gauging whether the vehicle engages in unnecessary be-
haviors. Due to the fact that each track has different length
and potentially different time to finish, we compared the
time to finish using perception h and our runtime perception
correction module (M−1, CJ , h∗) with time to finish with
perfect observer h∗. Then in Table II, we show the percentage
of increase in time to finish using our runtime perception
correction module. As presented, the percentage increases in
completion time are, for the most part, negligible. The average
percentage increase in time to finish the 33 scenarios is 2.8%.

Track 1 Track 2 Track 3

Weather 1
C1 X X X
C2 X +1.5% +4.1%
C3 +3.2% +2.6% +4.6%

Weather 2
C1 X +1.0% +3.0%
C2 +1.3% +1.5% +3.6%
C3 +3.2% +2.6% +4.1%

Weather 3
C1 X X X
C2 X +1.5% +4.6%
C3 +3.2% +2.6% +5.2%

Weather 4
C1 X X +2.5%
C2 X +1.5% +3.6%
C3 +3.2% +2.6% +4.1%

Weather 5
C1 +2.6% +1.0% +2.5%
C2 +1.3% +1.5% +3.6%
C3 +3.2% +2.6% +5.2%

Weather 6
C1 +2.6% +1.0% +2.5%
C2 +1.3% +1.5% +4.6%
C3 +3.2% +2.6% +4.1%

TABLE II: Percentage of increase in time to finish by compar-
ing system use runtime perception correction (M−1, CJ , h∗)
with system that uses perfect observer h∗. ”X” indicates
our runtime perception correction module cannot finish that
scenario safely

E. PPC can be empirically constructed by BNN

We evaluated whether the constructed PCC is effective
by applying the trained BNN model on scenarios not in its
training data, and we see that for 91.2% of the testing data,
h−1 conforms to the constructed M−1 (i.e. x = h−1(y) ∈
M−1(h(x, e)) for x, e in the testing dataset). We show an
example of how PCC visualizes in Figure 4a, 4b. We see
that, for most of the time, the constructed PCC through
BNN always include the ground truth, which satisfies the
conformance property of M−1. For example, in Figure 4a,
between timestamp 200 and 250, although observed distance,

generated by perception h, slightly differ from ground truth
distance, the PCC we constructed(yellow shaded part) through
BNN always contain the ground truth.

VII. CONCLUSIONS

We presented our method, which leverages the preimage
perception contract and a risk heuristic, to correct learning-
based perception errors for safety during runtime, assuming
perfect conformance. Empirically, our approach demonstrated
the capability to rectify 73% of unsafe Adaptive Cruise Con-
trol (ACC) scenarios stemming from perception errors, while
minimizing unnecessary behavior.

A. Limitation

Ideally, by theorem 1, we should be able to recover any
unsafe scenarios caused by noisy perception module. However,
the empirical result only showed 73% success. This is due to
the fact that constructing the Preimage Perception Contract
M−1 through BNN does not guarantee 100% conformance.
In other word, Proposition 1 might not always hold; however,
in the same time, constructing M−1 using any data-driven
method(E.g. quantile regression) will face the same issue.

B. Future Directions

In this paper, we extensively test multiple scenarios (differ-
ent curvature, weather, and road conditions) to find particular
five adversarial scenarios where perception module fails to
ensure safety. However, manually searching through the whole
state space to find an adversarial example is time-consuming
and inefficient. Our next step is to use the preimage perception
contract to infer potential environment variables that can might
lead to unsafe scenarios. This could help indicate the weakness
of the controller.

REFERENCES

[1] R. R. Wiyatno, A. Xu, O. Dia, and A. de Berker, “Adversarial examples
in modern machine learning: A review,” CoRR, vol. abs/1911.05268,
2019. [Online]. Available: http://arxiv.org/abs/1911.05268

[2] S. Mitra and D. Liberzon, “Stability of hybrid au-
tomata with average dwell time: an invariant approach,”
http://theory.lcs.mit.edu/˜mitras/research/cdc04-full.ps.gz.

[3] T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, H. Ravanbakhsh,
M. Vazquez-Chanlatte, and S. A. Seshia, “VERIFAI: A toolkit
for the design and analysis of artificial intelligence-based
systems,” CoRR, vol. abs/1902.04245, 2019. [Online]. Available:
http://arxiv.org/abs/1902.04245

[4] A. Anta, R. Majumdar, I. Saha, and P. Tabuada, “Automatic verification
of control system implementations,” in Proceedings of the Tenth ACM
International Conference on Embedded Software, ser. EMSOFT ’10.
New York, NY, USA: ACM, 2010, pp. 9–18. [Online]. Available:
http://doi.acm.org/10.1145/1879021.1879024

[5] N. Chan and S. Mitra, “Verifying safety of an autonomous spacecraft
rendezvous mission,” in ARCH17. 4th International Workshop on
Applied Verification of Continuous and Hybrid Systems, collocated
with Cyber-Physical Systems Week (CPSWeek) on April 17, 2017
in Pittsburgh, PA, USA, 2017, pp. 20–32. [Online]. Available:
http://www.easychair.org/publications/paper/342723

[6] D. Reis, J. Kupec, J. Hong, and A. Daoudi, “Real-time flying object
detection with yolov8,” 2023.

[7] Z. Wang, W. Ren, and Q. Qiu, “Lanenet: Real-time lane detection
networks for autonomous driving,” CoRR, vol. abs/1807.01726, 2018.
[Online]. Available: http://arxiv.org/abs/1807.01726

[8] C. Hsieh, Y. Li, D. Sun, K. Joshi, S. Misailovic, and S. Mitra, “Verifying
controllers with vision-based perception using safe approximate ab-
stractions,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 41, no. 11, pp. 4205–4216, 2022.

[9] A. Angello, C. Hsieh, P. Madhusudan, and S. Mitra, “Perception
contracts for safety of ml-enabled systems,” in Proc. of the ACM on
Programming Languages (PACMPL), OOPSLA, 2023.

[10] D. Sun, B. C. Yang, and S. Mitra, “Learning-based perception contracts
and applications,” 2023.

[11] C. Hsieh, Y. Koh, Y. Li, and S. Mitra, “Assuring safety of vision-based
swarm formation control,” 2023.

[12] C. S. Păsăreanu, R. Mangal, D. Gopinath, S. Getir Yaman, C. Im-
rie, R. Calinescu, and H. Yu, “Closed-loop analysis of vision-based
autonomous systems: A case study,” in Computer Aided Verification,
C. Enea and A. Lal, Eds. Cham: Springer Nature Switzerland, 2023,
pp. 289–303.

[13] Z. Xu, Y. Sun, and M. Liu, “icurb: Imitation learning-based
detection of road curbs using aerial images for autonomous
driving,” CoRR, vol. abs/2103.17118, 2021. [Online]. Available:
https://arxiv.org/abs/2103.17118

[14] B. Tan, N. Xu, and B. Kong, “Autonomous driving in reality with rein-
forcement learning and image translation,” CoRR, vol. abs/1801.05299,
2018. [Online]. Available: http://arxiv.org/abs/1801.05299

[15] S. Dean, N. Matni, B. Recht, and V. Ye, “Robust guarantees for
perception-based control,” in Learning for Dynamics and Control.
PMLR, 2020, pp. 350–360.

[16] S. Dean, A. Taylor, R. Cosner, B. Recht, and A. Ames, “Guaranteeing
safety of learned perception modules via measurement-robust control
barrier functions,” in Conference on Robot Learning. PMLR, 2021,
pp. 654–670.

[17] C. Dawson, B. Lowenkamp, D. Goff, and C. Fan, “Learning safe,
generalizable perception-based hybrid control with certificates,” IEEE
Robotics and Automation Letters, vol. 7, no. 2, pp. 1904–1911, 2022.

[18] G. Chou, N. Ozay, and D. Berenson, “Safe output feedback motion
planning from images via learned perception modules and contraction
theory,” in International Workshop on the Algorithmic Foundations of
Robotics. Springer, 2022, pp. 349–367.

[19] T. Chen, J. Xu, and P. Agrawal, “A system for general in-hand object
re-orientation,” 2021.

[20] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems
using barrier certificates,” in Hybrid Systems: Computation and Control,
R. Alur and G. J. Pappas, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 477–492.

[21] S. Prajna and A. Rantzer, “On the necessity of barrier
certificates,” IFAC Proceedings Volumes, vol. 38, no. 1, pp.
526–531, 2005, 16th IFAC World Congress. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1474667016367556

[22] T. Badings, L. Romao, A. Abate, and N. Jansen, “Probabilities are not
enough: Formal controller synthesis for stochastic dynamical models
with epistemic uncertainty,” 2022.

[23] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista,
K. Sreenath, and P. Tabuada, “Control barrier functions: Theory and
applications,” CoRR, vol. abs/1903.11199, 2019. [Online]. Available:
http://arxiv.org/abs/1903.11199

[24] C. Dawson, S. Gao, and C. Fan, “Safe control with learned certificates:
A survey of neural lyapunov, barrier, and contraction methods,” 2022.

[25] M. Cleaveland, I. Ruchkin, O. Sokolsky, and I. Lee, “Monotonic
safety for scalable and data-efficient probabilistic safety analysis,”
in 2022 ACM/IEEE 13th International Conference on Cyber-
Physical Systems (ICCPS). Los Alamitos, CA, USA: IEEE
Computer Society, may 2022, pp. 92–103. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ICCPS54341.2022.00015

[26] R. McAllister, Y. Gal, A. Kendall, M. van der Wilk, A. Shah,
R. Cipolla, and A. Weller, “Concrete problems for autonomous
vehicle safety: Advantages of bayesian deep learning,” in Proceedings
of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI-17, 2017, pp. 4745–4753. [Online]. Available:
https://doi.org/10.24963/ijcai.2017/661

[27] A. Graves, “Practical variational inference for neural networks,” in
Advances in Neural Information Processing Systems, J. Shawe-Taylor,
R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, Eds., vol. 24.
Curran Associates, Inc., 2011.

[28] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural networks,” 2015.

[29] Y. Gal and Z. Ghahramani, “Bayesian convolutional neural networks
with bernoulli approximate variational inference,” 2016.

[30] A. Dosovitskiy, G. Ros, F. Codevilla, A. M. López, and V. Koltun,
“CARLA: an open urban driving simulator,” CoRR, vol. abs/1711.03938,
2017. [Online]. Available: http://arxiv.org/abs/1711.03938

[31] C. Fan, B. Qi, S. Mitra, and M. Viswanathan, “DRYVR: data-
driven verification and compositional reasoning for automotive
systems,” CoRR, vol. abs/1702.06902, 2017. [Online]. Available:
http://arxiv.org/abs/1702.06902

[32] I. Gog, S. Kalra, P. Schafhalter, M. A. Wright, J. E. Gonzalez, and
I. Stoica, “Pylot: A modular platform for exploring latency-accuracy
tradeoffs in autonomous vehicles,” CoRR, vol. abs/2104.07830, 2021.
[Online]. Available: https://arxiv.org/abs/2104.07830

[33] M. Jiang, K. Miller, D. Sun, Z. Liu, Y. Jia, A. Datta, N. Ozay,
and S. Mitra, “Continuous integration and testing for autonomous
racing software: An experience report from graic,” IEEE ICRA 2021,
International Conference on Robotics and Automation, Workshop
on OPPORTUNITIES AND CHALLENGES WITH AUTONOMOUS
RACING. [Online]. Available: https://par.nsf.gov/biblio/10296575

[34] V. Sukhil and M. Behl, “Adaptive lookahead pure-pursuit for
autonomous racing,” CoRR, vol. abs/2111.08873, 2021. [Online].
Available: https://arxiv.org/abs/2111.08873

[35] A. AbdElmoniem, A. Osama, M. Abdelaziz, and S. Maged, “A
path-tracking algorithm using predictive stanley lateral controller,”
International Journal of Advanced Robotic Systems, vol. 17, p.
172988142097485, 11 2020.

