Performance-Guided Refinement for Visual Aerial Navigation
using Editable Gaussian Splatting in FalconGym 2.0

Yan Miao!, Ege Yuceel', Georgios Fainekos?, Bardh Hoxha?, Hideki Okamoto? and Sayan Mitra!

Abstract— Visual policy design is crucial for aerial naviga-
tion. However, state-of-the-art visual policies often overfit to
a single track and their performance degrades when track
geometry changes. We develop FalconGym 2.0, a photorealistic
simulation framework built on Gaussian Splatting (GSplat)
with an Edit API that programmatically generates diverse static
and dynamic tracks in milliseconds. Leveraging FalconGym
2.0’s editability, we propose a Performance-Guided Refinement
(PGR) algorithm, which concentrates visual policy’s training on
challenging tracks while iteratively improving its performance.
Across two case studies (fixed-wing UAVs and quadrotors) with
distinct dynamics and environments, we show that a single
visual policy trained with PGR in FalconGym 2.0 outperforms
state-of-the-art baselines in generalization and robustness: it
generalizes to three unseen tracks with 100% success without
per-track retraining and maintains higher success rates under
gate-pose perturbations. Finally, we demonstrate that the visual
policy trained with PGR in FalconGym 2.0 can be zero-shot
sim-to-real transferred to a quadrotor hardware, achieving a
98.6% success rate (69 / 70 gates) over 30 trials spanning two
three-gate tracks and a moving-gate track.

I. INTRODUCTION

Visual aerial navigation is critical for applications such
as mapping, search-and-rescue, environmental monitoring
and racing. Recent progress in photorealistic simulation
environments has fueled zero-shot sim-to-real success for
visual aerial navigation. Notably, SOUS VIDE [1] used
Gaussian Splatting (GSplat) [2] to reconstruct an indoor
lab and achieved zero-shot sim-to-real navigation; Falcon-
Gym [3] used NeRF [4] to build digital twins of three racing
tracks and demonstrated zero-shot sim-to-real transfer of
quadrotor gate crossing via imitation learning; Geles et al. [5]
reported strong sim-to-real performance with a vision-only
asynchronous actor-critic on three quadrotor racing tracks.
While effective, these benchmarks face generalization limits:
all three achieve high performance on their training tracks
but do not generalize to unseen tracks (as we also confirm
in Section IV), restricting broader applicability. GRaD-Nav
[6] improves robustness to different gate positions and back-
ground distractors by using one policy, but still relies on
constructing multiple GSplat tracks first and training in those.

In this paper, we focus on developing a single visual policy
that can traverse a family of tracks, where each track consists
of an ordered sequence of tight racing gates, as shown in
Figure 1 and Figure 4. To enable such cross-track general-
ization from limited real data, we develop FalconGym 2.0.
From just minutes of real-world videos, FalconGym 2.0 can
generate arbitrarily many synthetic yet photorealistic tracks

1 University of Illinois at Urbana-Champaign
2Toyota Research Institute of North America

- Moving Track

/ 10 trials

SR: 100%
"

MGE: 15cm
Fig. 1: Trajectories for UAV case study in FalconGym 2.0
across three unseen tracks (Spatial-S, Random and Moving).
Top row: red overlays visualize predicted gate masks (Section III-
B). Bottom row: 10 trials per track from different initial states; the
translucent gates in the Moving track show the gate’s past positions.

10 trials
SR: 100%
MGE: 19cm

10 trials.
SR: 100%
MGE: 21cm

for training without additional real-world data collection.
This is achieved by our Edit API, as shown in Figure 3, that
allows programmatic editing of gates in the GSplat to create
diverse tracks in milliseconds. Beyond static edits, our Edit
API also supports 4D time-varying simulation with moving
gates, enabling dynamic tracks in Section IV. Although this
paper focuses on aerial navigation and gate-editing, the same
Edit API could readily extend to broader robotics settings
(e.g., obstacle placement for ground robots).

FalconGym 2.0’s editable capability to generate arbitrarily
many photorealistic tracks unlocks a range of visual policy
training strategy from active learning to curriculum learning
[7]1. We develop a Performance-Guided Refinement (PGR)
algorithm that: (i) identifies challenging tracks where the
visual policy underperforms; (ii) synthesizes similar yet
slightly different challenging tracks with the Edit API to
augment the training dataset; and (iii) iteratively refines the
visual policy via imitation learning from a state-based expert.

Beyond the Edit API and the PGR algorithm it enables,
FalconGym 2.0 improves over FalconGym [3] via: (i) replac-
ing NeRF rendering with fast GSplat to accelerate training;
(ii) eliminating expensive motion capture with an accessible
ArUco marker for world-frame simulation reconstruction.

Through two case studies (fixed-wing UAVs and quadro-
tors) with different dynamics, environments and gate geome-
tries, we show that our visual policy trained with PGR can
generalize to three unseen tracks in FalconGym 2.0 with
100% success. Moreover, we outperform state-of-the-art vi-
sual baselines [3], [5] in both generalization and robustness:
our single visual policy operates across three unseen tracks,
where baselines require separate per-track policies, and we

maintain higher performance under gate-pose perturbations.
Finally, the visual policy trained with PGR in FalconGym
2.0 can zero-shot transfer to a quadrotor hardware, achieving
98.6% (69 / 70 gates) success rate in 30 hardware trials
spanning two 3-gate tracks and a moving-gate track, as
shown in Figure 6.

In summary, our contributions are: (1) FalconGym 2.0:
an editable photorealistic simulation framework based on
GSplat that supports fast world-frame modification of envi-
ronment configurations. (2) Performance-Guided Refinement
(PGR): an algorithm that leverages FalconGym 2.0’s editabil-
ity to expose the visual policy’s training to challenging tracks
and iteratively improve performance. (3) Zero-Shot Sim-to-
real: Our visual policy trained with PGR in FalconGym 2.0
can be zero-shot transferred to a real quadrotor hardware to
traverse three unseen tracks.

II. RELATED WORK

a) Sim-to-real in robotics.: Sim-to-real transfer is a
longstanding goal in robotics, due to its efficient and safe
training before deployment. With advances in photorealistic
scene reconstruction like NeRF [4] and 3D Gaussian Splat-
ting (GSplat) [2], recent robotics work increasingly trains
in high-fidelity simulators. NeRF2Real [8] and RialTo [9]
demonstrate NeRF-to-real transfer for humanoid navigation
and robot manipulation, respectively. Vid2Sim [10] converts
real-world videos into interactive simulators for urban nav-
igation using GSplat reconstruction, while RoboSplat [11]
and Splat-MOVER [12] leverages GSplat for domain ran-
domization to improve robot manipulation performance.

In aerial navigation, FalconGym [3] constructs NeRF-
based digital twins of racing tracks and achieves zero-shot
sim-to-real quadrotor gate crossing via imitation learning,
while SOUS VIDE [1] uses GSplat to build an indoor digital
twin and also reports zero-shot transfer. Geles et al. [5] train
a vision-only policy using async actor-critic and demonstrate
high-speed racing (40km/h) across three tracks. Despite
strong sim-to-real results, these benchmarks generally require
per-track training and struggle to generalize to unseen tracks.

b) Policy Refinement by Environment Shaping:
Curriculum-based environment shaping [7] has been used
to improve control policy in robotics by adaptively shaping
training environments. It has been successful in simulation
for RL agents in bipedal walkers [13]. [14] uses a similar
“environment policy” idea for quadrotor navigation. How-
ever, these work used state-based control and did not involve
rendering or visual policy, while our PGR algorithm adapts
an editable photorealistic GSplat environment to improve
visual policy performance for aerial navigation.

c) Editable Gaussian Splatting: Recent work focuses
on using editable GSplat to generate synthetic but pho-
torealistic environment. GaussianEditor [15] enables text-
guided appearance and geometry edits of objects in GSplat.
VCEDIT [16] ensures multi-view consistency when using
diffusion-guided GSplat edits. Instruct-GS2GS [17] provides
instruction-based editing of GSplat scenes via 2D diffusion.
While these work advance GSplats scene editing in computer

vision, they focus on improving photorealism and accuracy,
rather than connecting to downstream closed-loop robotics
applications. In contrast, FalconGym 2.0 not only provides
open-source Edit APIs to edit objects in GSplat, but also
couples this editability with a performance-guided refine-
ment algorithm that iteratively improves downstream visual
policy’s performance in the closed loop.

III. METHODS

Visual Policy

I Past Action

Controller

Perception

Mask

A\ 4

FalconGym 2.0
3

Dynamics _
(UAV / Quadrotor)

RGB

=

GSplat Renderer

State

a

Action

: Training
Fig. 2: Closed-loop system in FalconGym 2.0: we provide

dynamics for a fixed-wing UAV and a quadrotor, and a GSplat
renderer that produces photorealistic RGB from arbitrary camera
poses in either scene. At each timestep, the dynamics propagate the
state, the renderer generates an RGB image, a perception module
predicts a gate mask, and a controller consumes the mask plus past
actions to predict the next action. During training, a Performance-
Guided Refinement (PGR) algorithm (Section III-C) focuses training
on challenging tracks generated using Edit API (Section III-A)

In this paper, we consider visual aerial navigation in the
gate-based track setting, where each track is an ordered
sequence of tight racing gates and the aerial vehicle must
safely traverse a set of tracks using only visual feedback.
Successful trajectories are shown in FalconGym 2.0 for a
fixed-wing UAV (Figure 1) and a quadrotor (Figure 4), and
on hardware for the quadrotor (Figure 6).

Prior work [3], [5] tackles this same aerial navigation prob-
lem and reports strong gate-crossing performance; however,
these methods require per-track training and a visual policy
trained on one track does not generalize reliably to unseen
tracks. This overfitting could be costly in practice, since
recollecting data and retraining for every new track is time-
consuming. Therefore, our goal is to develop a single visual
policy that operates zero-shot on unseen tracks, eliminating

Delete

Scale

Original GSplat Add + Translate Rotate Duplicate Lighting

Fig. 3: Edit API in FalconGym 2.0. Our Edit API (Section III-A) provides world-frame programmatic placement of objects while the
backend handles all coordinates and camera-to-world transform. The seven API: add, translate, rotate, scale, duplicate,

delete, and 1ighting, allow users to modify object pose, size, and appearance to generate a photorealistic 4D simulation environment.
Shown are gates edits across two environments. This editable capability enables PGR algorithm to improve visual policy (Section III-C).

per-track retraining while maintaining robustness to track-
configuration changes. In this paper, we restrict the tracks
to be dynamically feasible and observable (when the aerial
vehicle crosses current gate center orthogonally, the next gate
must be within the camera’s field of view). This observability
requirement that keeps the next gate in sight is reasonable
in a visual-only setting without knowledge of the map.

Our method comprises three components. First, we present
FalconGym 2.0 (Sec.III-A), a GSplat-based photorealistic
simulation framework coupled with an Edit API that enables
dynamic gate placement, improving on [1], [3] static simula-
tion. Second, we design a visual policy (Section III-B) in the
closed loop in FalconGym 2.0 that mitigates the overfitting
observed in earlier work [3] through modular architecture
that separates perception and control. Third, we introduce
a novel Performance-Guided Refinement (PGR) algorithm
(Section III-C) that uses FalconGym 2.0’s editability to
expose visual policy to challenging tracks and iteratively
refine its performance.

A. FalconGym 2.0: Editable GSplat

We propose a photorealistic simulation framework Falcon-
Gym 2.0, that is capable of developing and testing different
visual policies, while improving on FalconGym [3] by
replacing NeRF with GSplat for fast rendering; substitut-
ing motion-capture with an ArUco marker for world-frame
alignment. ! More importantly, FalconGym 2.0 introduces
an Edit API that’s capable of generating arbitrarily many
training tracks.

a) GSplat Scene representation: A trained GSplat
scene consists of a set of N anisotropic Gaussians, i.e.

"More specifically, to construct FalconGym 2.0, a human operator uses
the onboard camera to capture a 3-minute video across the flying arena
from diverse viewpoints. We recover camera intrinsics and initial poses
with COLMAP [18]. Because COLMAP’s frame is arbitrary, we align it to
a physically meaningful world frame by placing an easily accessible ArUco
marker in the scene, thereby eliminating the need for expensive motion
capture. Using OpenCV’s ArUco detector, we locate the marker center in
a subset of images where the marker is visible and treat it as the global
origin. We then compute the rigid transform between the COLMAP and
world frames via the Kabsch-Umeyama method [19]. Finally, the images
and poses are fed to the NeRFStudio Splatfacto pipeline [20] to train
a photorealistic GSplat scene in world coordinates.

S = {(pj,Zj,cj,aj) }j.vzl, where p; € R3 is the mean;
Y € R3*3 is the covariance, parameterized via a rotation
R; € SO(3) and per-axis scales s; € R3 (e, ¥; =
R; diag(s3)R]); ¢; € R? is the color; and o € [0,1] is
the opacity. For rendering an image as seen by a camera
in this scene .S, the N 3D Gaussians are projected onto the
camera’s image plane then their colors are blended according
to their depths relative to the camera.

b) Edit API: Because NeRFStudio [20] (the library we
used to train GSplat) optimizes scenes in an internal coor-
dinate frame, programmatic editing is inconvenient for users
who reason in a world frame. FalconGym 2.0 instead exposes
world-frame edits and handles all coordinate conversions and
camera-to-world transformations in the backend. To edit a
scene in FalconGym 2.0, users can first select an object
either via predefined Gaussian IDs (e.g., gate primitives
from another GSplat scene provided by us) or via user-
defined world-frame bounding boxes, then apply pose, color
and scale edits via our API. Concretely, we provide seven
composable operations, as shown in Figure 3: add () inserts
objects from another GSplat scene; translate () moves
selected objects to user-defined poses; rotate () rotates the
selected objects around its center for user-defined rotation;
scale () scales the selected objects’ sizes; duplicate ()
clones the selected object; delete () removes selected
objects; 1ighting () adjusts gaussian-level colors for se-
lected objects. Each operation updates the selected objects’
corresponding Gaussians’ p;, »; (via Rj,s;), ¢j, and o;
on the backend. Since each API is a tensor operation, on
average each operation finishes ~ 0.004s with a 4090 GPU.
Users can freely combine any of the 7 API to accomplish
complex edits and build customized 4D simulations. (e.g.,
moving gates in Section IV). Although our experiments focus
on aerial navigation with gates, we expect the same Edit
API to work on broad robotics tasks that would benefit from
photorealistic editable GSplat scenes.

B. Visual Policy in the Closed Loop

In this subsection, we introduce our closed-loop system
architecture and visual policy design, as shown in Figure
2. The previous subsection has introduced the Edit API for

moving objects (i.e. gates) within GSplat scenes; here we
focus on moving the aerial vehicle (i.e., the onboard camera).
Although the aerial vehicle could be placed in arbitrary
poses in FalconGym 2.0, closed-loop control requires its
motion obey physically meaningful dynamics. FalconGym
2.0 provides two aerial dynamics models: a Dubins airplane
dynamics model for fixed-wing UAVs [21] and a quadrotor
dynamics model [22]. The dynamics model is implemented
in a plug-and-play fashion so users can substitute it with al-
ternative platform’s dynamics (e.g., VTOL or ground robots).

Left Turn Track

\
0 trials 10 trials
SR: 100% SR: 100% N
MGE: 9.5cm MGE: 20cm \

Fig. 4: Trajectories for quadrotor case study in FalconGym 2.0
across three unseen tracks (Left-Turn, Random and Moving).

Random Track

10 trials
SR: 100%
MGE: 9.5cm

With renderer and dynamics in place, next we focus on
the visual policy design. [3] is quite successful in zero-
shot sim-to-real quadrotor navigation by an end-to-end ViT
policy. However, as also acknowledged by their authors, their
visual policy trained on one track tends to specialize to
that track. Our further experiments confirm [3]’s overfitting:
even after removing the gates entirely using our Edit API,
[3]’s visual policy continued to fly around the memorized
route, suggesting reliance on background appearance rather
than gate-relevant features. Moreover, [3] has to run the
hardware experiments offboard due to a heavy dual-Vision-
Transformer (ViT) policy, which also required ground-truth
state of the next gate.

Therefore, to mitigate overfitting and reduce model com-
plexity for onboard deployment, we design a modular archi-
tecture that decouples perception from control, inspired by
[5] which trains a RL algorithm based on gate-perception
masks to fly through racing gates. First, we design a percep-
tion module that predicts a gate mask. Next, a lightweight
controller consumes this mask with a short history of past
controls to output the next action, as shown in Figure
2. As validated in Section IV, this modular pipeline not
only improves generalization, but also supports on-board
execution due to the smaller model size compared to [3]’s
dual-ViT setup.

a) Gate-Detection Perception Module: We train the
perception module completely in FalconGym 2.0. As shown
in the blue box in Figure 2, the perception module takes an
onboard RGB image and predicts a binary mask where white
pixels indicate gates and black pixels indicate background.
We adopt a U-Net [23] backbone for gate segmentation for its
strong performance on dense prediction. To obtain ground-

truth masks, we automatically generate them analytically via
standard 3D-to-2D projection techniques in computer vision.
Because gate positions (placed in FalconGym 2.0 through
our Edit API) are known and the geometry (e.g. diameter)
is measured, we can project 3D gates to a 2D image plane
using known camera matrix. Pixels whose coordinates lie
within the gate’s projected ring (i.e., between inner and outer
boundaries) are labeled white, and all others black.

To collect training data for the U-Net, we: (i) leverage
the Edit API to place a two-gate track in the workspace;
(i1) sample a feasible camera pose at an appropriate distance
with yaw roughly oriented toward the track; and (iii) render
the RGB image and compute its ground truth 2D mask as
above. We sample two-gate tracks because we want the
U-Net to learn about scenarios where one gate might be
occluded by the other, and experiments show our U-Net
could generalize to multi-gate detection. We gather RGB
images (square-gate UMX for UAV case study and circular-
gate for quadrotor case study) and train separate U-Net for
each case study with supervised learning on these image-
mask pairs. Qualitative results of the U-Net are shown in
Figure 1 and 4 in FalconGym 2.0, while Figure 6 visualizes
its performance when zero-shot deployed on hardware.

b) Controller: With a predicted mask, the controller
receives an explicit geometry-focused signal of gate lo-
cations, potentially reducing reliance on background cues
and mitigating overfitting. Next, we further improve the
architecture of [3] by removing IMU inputs and instead
feeding a short history of past controls to the controller (blue
box in Figure 2), which provides implicit temporal context.
Next, the controller training follows a similar imitation
learning procedure as in [3]: we first implement a state-
based expert that flies through different tracks in simulation;
at each timestep, we render the onboard RGB image and
record the state-based controller’s expert action. The RGB
image is passed through the trained U-Net to obtain a binary
mask, and we form supervised pairs where the masked image
coupled with the past control actions are used to predict the
current action to train the controller.

Thanks to the Edit API, now we can synthesize essentially
arbitrarily many tracks in FalconGym 2.0 to train both
perception and controller without additional per-track real-
world effort required by [1], [3], [5]. To sample efficiently,
our unique design choice is to train on two-gate tracks.
Intuitively, the initial state together with two successive gates
spans the local geometric variability of longer courses; a con-
troller that performs well on such segments could generalize
well to multi-gate tracks by invariance and composition, as
is empirically confirmed in Section IV.

C. Performance-Guided Refinement Training

A straightforward method to collect training data for the
visual policy would be to uniformly sample the two-gate
track space that is dynamically feasible and observable (as
defined at the start of this section). However, uniform sam-
pling can be sample-inefficient in a large high-dimensional
workspace. With our Edit API, we can steer training data col-

lection toward the visual policy’s weak spots and iteratively
refine to improve the visual policy.

Inspired by adversarial training [24] and min-max problem
[25] which tries to minimize the possible loss for a worst case
(maximum loss) scenario, we cast our aerial navigation as a
min-max problem:

min max Brr [L(759)], (1)
where g parameterizes a two-gate track, G is the dynamically
feasible and observable two-gate space, and £ measures
task performance on a trajectory rollout 7 achieved by the
visual policy (perception and controller) m parameterized by
6. We define the task performance function as L£(7;g) =
1{collision or timeout} + Apes || P’ — ¢(g) ||, where ¢(g) €
R? is the gate center, and p’ € R? is the aerial vehicle’s
position when crossing the target gate plane. The second
term is only evaluated on successful crossings. Intuitively,
“maximizer” proposes challenging gate placements to cause
visual policy mg’s poor performance, while “minimizer”
updates 7y to reduce loss to improve performance. This way,
training is focused on where visual policy under-performs.

Algorithm 1 Performance-Guided Refinement of Visual Policy

Input: Gate space G partitioned into M grids, state-based
expert policy 7, iterations 7', validation gate set Gy,
Qutput: Trained visual policy my
I D+—g > Training dataset
2: Sample initial tracks G; C G uniformly at random
3: fort=1to T do

4 for all two-gate track g € G; do

5 Run closed-loop trajectory rollout with 75 and g

6: Collect trajectory (action, image) and add to D

7: end for

8: Train visual policy my on D

9: for i =1to M do © evaluate grid-wise performance

10: bi \GvallﬁMi\ Y gecomnar; £(m039)

11: end for

12: Compute normalized grid weights:

13: w(—zléﬁ Vi=1,...,.M

14: w; + (1= B)w; + % > Avoid Mode Collapse

15: Generate next set G11 by: first choosing M; with prob-
ability w; and then sample g ~ M; uniformly

16: end for

Yet directly solving Equation (1) is infeasible, so we im-
plement grid-based Performance-Guided Refinement (PGR),
as shown in Algorithm 1. We partition the two-gate space
G into M grids {M;}M,. During the first iteration, we
synthesize (G by first uniformly sampling the grids and then
drawing two-gate layouts uniformly within selected grids.
We delete the dynamically infeasible and unobservable tracks
automatically using the expert state-based controller and ge-
ometric calculation. Next, for each iteration ¢: we (i) collect
trajectory rollouts on a batch of two-gate layouts G, using
the expert state-based controller to augment the perception
and imitation dataset D, (ii) train the visual policy 7y on
D, (iii) evaluate per-grid validation performance ¢; using a

held-out set G, and (iv) resample the next batch G;y1 by
first drawing grids with probability proportional to ¢; and
then sampling tracks uniformly within each selected grid.
We apply this PGR to both perception and controller training
since poor performance could come from both modules. To
avoid mode collapse (as observed in [24]), we mix a small
fraction of uniform sampling w; < (1 — B)w; + B/M,
and reuse a fixed Gy, for stable scoring. “Ours (w/ PGR)”
in Table I and Table II corresponds to performance-guided
refinement algorithm, while “Ours (w/o PGR)” refers to the
approach of uniform sampling two-gate tracks.

IV. EXPERIMENTS

We evaluate our approach in two case studies: fixed-wing
UAVs and quadrotors. For each case study, we first describe
the experimental setups, and then quantitatively evaluate our
visual policy against baselines in FalconGym 2.0. We further
demonstrate zero-shot sim-to-real transfer on the quadrotor
case study in Section IV-B.

A. Case Study 1: fixed-wing UAV

We model the fixed-wing UAV with a Dubins Airplane
dynamics [21]. The state is (z,y, z, %, 8) (3D position, yaw
and pitch). The control action is bank rate and pitch rate.
Forward speed is fixed at 7m/s. We implement the state-
based controller also from [21], to serve as a baseline and
the expert of our imitation learning approach (Section III-B).

Our UAV flying arena measures 40 x 20 x 4 m. The square
gates used in the UAV case study have an inner side length
of 200 cm. The UAV has a width of 40 cm. A gate crossing is
deemed success if, at the instant the aerial vehicle passes the
gate plane, the distance from the UAV to the gate center
is less than 80cm. We evaluate the performance of gate
crossing on two metrics: Success Rate (SR), the percentage
of gates the visual policy successfully crosses; Mean Gate
Error (MGE), average distance between the UAV and the
gate center at the time of gate crossing.

Using FalconGym 2.0’s Edit API, we design three dy-
namically feasible observable tracks (Figure 1): (i) Spatial-
S, requiring consecutive sharp turns with altitude changes;
(i) Random, where UAV largely maintains heading while
alternating left/right gates and adjusting height; (iii) Moving,
where one gate translates from right to upper-left at 2m/s.
For each track, we selected 10 slightly different initial poses
to evaluate and report the average SR and MGE in Table 1.

We implemented five policies and evaluate on their per-
formance in terms of SR, MGE and generalization. First,
the state-based expert [21] has access to full state and all
gate poses. As expected, it attains the best SR/MGE and
generalize well across all tracks. Then we implemented
two state-of-the-art visual baselines [3], [5]. [3] trains the
visual policy in a NeRF-based simulation, we adopt their
architecture and re-trained the visual policy in our Falcon-
Gym 2.0 with the help of our Edit API. We also replace
their IMU input with the past control, because IMU is not
applicable for the Dubins airplane model. [5] uses a Swin-
transformer-based gate detector, however, since the code is

not publicly available, we replaced the gate detector with our
Mask Detector describe in Section III-B. We also modify
the reward function by tuning the hyperparameters to make
it work in our cases. We faithfully replicate the controller
architecture based on their paper and our produced results,
e.g. Figure 5, does match their reported behavior. Since both
visual baselines acknowledge in their papers that they require
training and testing on the same track, to further evaluate
their method’s performance on unseen tracks, we train those
baselines on the Spatial-S track and evaluate on all three
tracks. The result shows that while both baselines performs
well in the training Spatial-S track, they do not generalize
well to unseen tracks Random and Moving, as shown in
Table I. We also train and test the baselines again on the exact
Random track, and find that they can both achieve 100%
success, which confirms that their method are overfitting to
training tracks.

TABLE I: Evaluation of five policies based on Success Rate (SR)
and Mean Gate Error (MGE) in the UAV Case Study. Success
criteria requires distance at gate plane crossing (MGE) < 80 cm.

FalconGym 2.0

Track Method Vision? Generalize? SR 1 MGE (cm) |
Spatial-S State-based X v 100% 15
Baseline A [3] v X 100% 24
Baseline B [5] v X 100% 20
Ours (w/o PGR) v v 100% 47
Ours (w/ PGR) v v 100% 19
Random State-based X v 100% 8
Baseline A [3] 4 X 0% N/A
Baseline B [5] 4 X 50% 47
Ours (w/o PGR) v v 100% 33
Ours (w/ PGR) v v 100% 21
Moving State-based X v 100% 14
Baseline A [3] v X 0% N/A
Baseline B [5] v X 0% N/A
Ours (w/o PGR) v 4 100% 47
Ours (w/ PGR) v v 100% 15

In contrast, our methods, both our uniformly sampling
approach and performance-guided refinement approach gen-
eralize to unseen tracks with a single visual policy. In fact,
all three evaluation tracks are unseen to our visual policy,
since our training only relies on two-gate track layouts
(Section III-B). The “Ours (w/o PGR)” approach refers to
our method by uniformly sampling the gate space to generate
300k dynamically feasible and observable two-gate tracks
and train the visual policy by imitation. The “Ours (w/
PGR)” approach utilized the performance-guided refinement
in Section III-C. Specifically, we partition G C R® (each
gate has (x,7, 2, yaw)) into (4 x 4 x 3 x 3)?~20k grids. In
the first iteration we draw 5 samples per grid to form 100k
training tracks; we then run PGR for T'=3 iterations with
£=0.05 in Algorithm 1. Both our variants achieve high SR
and generalize well on all tracks, while PGR further reduces
MGE, indicating safer crossings and better performance.

Furthermore, we assess each policy’s sensitivity to gate
position changes using domain randomization enabled by
FalconGym 2.0’s Edit API, as shown in Figure 5. For fair
comparison, we conduct this ablation study on the Spatial-
S track on which both baselines are trained, and evaluate

UAV: SR vs Perturbation

100

920

80

70

SR (%)

State-Based
Miao et al.
Geles et al.
Qurs(w/o PGR)
Ours(w/ PGR)

60

50

40

BRERER

10 20 30 40 50 60

Perturbation level (cm)
Fig. 5: Robustness to gate-pose perturbations on Spatial-S
track in FalconGym 2.0. For a perturbation level a cm, each gate
is independently shifted by a random 3D offset § € [—a, a]®. For
each perturbation level, we run all five policies on 10 randomized
tracks (50 gates total) and report the Success Rate (SR).

perturbed variants of that track. At a given perturbation
level a (cm), every gate is independently shifted by a 3D
offset § € [—a, a]® (applied along z, ¥, and z direction with
random signs). We generate 10 perturbed tracks (50 gates
total) for each perturbation level and run all five policies,
reporting Success Rate (SR). Note that since we originally
designed Spatial-S track to be challenging with sharp turns
and altitude changes, increasing a demands sharper turns and
pitch changes, so SR decreases for all methods. For high
perturbation level, even state-based expert fails because of
dynamically infeasible tracks. Figure 5 shows that our PGR
approach remains more robust in gate poses perturbation
than the visual baselines and uniform sampling. PGR tracks
the expert’s trend closely with only slight SR gap, which is
expected since our visual policy imitates state-based expert.

B. Case Study 2: Quadrotor

Random Track

Left-Turn Track

10 trials
SR: 100%
MGE: 17.7cm

10 trials
SR: 100%
MGE: 17.1cm

10 trials
SR: 100%*

h MGE: 12.7cm*

Fig. 6: Trajectory plots for the quadrotor case study on real
hardware. Visual policy learned in FalconGym2.0 can be zero-
shot transferred to real hardware. We disable the forward velocity
on Moving track for safety reasons, evaluating lateral tracking only.

1) Performance in FalconGym 2.0: We model the quadro-
tor with the standard 12-state dynamics of [22]. The state
comprises position, linear velocity, attitude, and angular
velocity. The state-based expert controller is also from [22],
which we set a constant 1m/s forward velocity. Among
several control modalities, we choose body-frame linear

velocities and yaw rate to match the hardware interface
used for zero-shot sim-to-real transfer in Section IV-B.2.
Our quadrotor flight arena measures 6 X 6 x 3m, as shown
in Figure 6. The circle gates we used have a 78 cm inner
diameter; the quadrotor width is 18 cm. Therefore, a crossing
is considered successful if, at the instant the quadrotor
intersects the gate plane, its distance to the gate center
(MGE) < 30cm. We adapt the same metrics as in the fixed-
wing study: Success Rate (SR) and Mean Gate Error (MGE).

We again design 3 dynamically feasible and observable
tracks (Figure 4) using FalconGym 2.0’s Edit API: (i).
Left-Turn, which involves sustained turning; (ii). Random,
where quadrotors need to maintain general heading while
alternating left/right gates; (iii). Moving, where one gate
translates to the right at 0.25 m/s.

TABLE II: Evaluation of five policies based on SR and MGE in
both FalconGym 2.0 and real world for the quadrotor case study. *
indicates lateral-tracking-only for Moving track for safety reasons.
Success criteria requires MGE < 30 cm.

FalconGym 2.0 ‘ Real World
Track Method SR 1 MGE (cm) | ‘ SR 1 MGE (cm) |
Left-Turn State-based 100% 58 100% 11.6
Baseline A [3] 100% 14.3 / /
Baseline B [5] 100% 17.0 / /
Ours (w/o PGR) 100% 11.3 93.3% 214
Ours (w/ PGR) 100% 9.5 96.7 % 17.7
Random State-based 100% 57 100% 59
Baseline A [3] 67.7% 323 / /
Baseline B [5] 25% 40.0 / /
Ours (w/o PGR) 100% 11.4 96.7% 16.2
Ours (w/ PGR) 100% 9.5 100% 17.1
Moving State-based 100% 2.0 100%* 7.4*
Baseline A [3] 0% N/A / /
Baseline B [5] 0% N/A / /
Ours (w/o PGR) 100% 24.1 100%* 16.8*
Ours (w/ PGR) 100% 20.7 100%* 12.7*

Baselines are implemented as in the fixed-wing study but
trained with the quadrotor GSplat data, with the modifica-
tions described in Section I'V-A to fit our pipeline. While our
exact visual policy (perception and controller) also works in
the quadrotor case study, we slightly modify it by replacing
the imitation-learned controller with a classical controller
that (i) filters the perception noise and retains only the largest
connected component (closest gate) in the predicted mask
and (ii)) commands the aerial vehicle to follow the centroid
of that component. This engineering trade-off is necessary
because the hardware quadrotor (Section IV-B.2) cannot exe-
cute two neural networks sequentially at the required closed-
loop rate. Therefore, we keep the U-Net for perception and
replace the second network with a classical controller. As a
result, instead of applying PGR to the entire visual policy
(perception and controller) as in the fixed-wing UAV case
study, we apply it only to the perception module.

As in the fixed-wing UAV experiments, we evaluate all five
policies on three tracks with ten different initial conditions.
Again, both baselines perform well on the training Left-Turn
track but overfit and degrade on the unseen Random and
Moving tracks, as shown in Table II. By contrast, both our
uniform sampling (Ours w/o PGR) and performance-guided
refinement (Ours w/ PGR) maintain 100% SR across all

tracks. While PGR further improves MGE, the margin over
uniform sampling is smaller than in the fixed-wing case.
We believe this is due to: (i) PGR is only applied to the
perception module (rather than the full perception-control
stack) and (ii) the quadrotor’s smaller workspace with coarser
grid discretization, i.e., (3 x 3 X 2 x 2)2 = 1,296 grids.

Quadrotor: SR vs Perturbation

100
90
80
70
60

SR(%)

—&— State-Based
50 Miao et al.
—8— Geles et al.
—e— Ours(w/o PGR)
30, —@— Ours(w/ PGR)

40

0 10 20 30 40
Perturbation Level (cm)
Fig. 7: Gate perturbations on Left-Turn track in FalconGym
2.0. For each perturbation level, we run all five policies on 10
randomized tracks (30 gates total) and report the Success Rate (SR).

We also conduct a gate-pose perturbation study similar to
the fixed-wing ablation study on the Left-Turn track in Fal-
conGym 2.0. Figure 7 shows that baselines’ SR drops rapidly
as perturbation level increases, whereas our policies remain
substantially more robust and closely track the expert’s.
The incremental gain from PGR over uniform sampling is
modest, again likely due to the partial refinement on the
perception only and the smaller space and number of grids.

2) Zero-shot Sim-to-Real Transfer: We zero-shot de-
ployed the trained perception module and same classical
controller used in FalconGym 2.0 on a 280g ModalAI®
Starling 2 quadrotor (upper-right of Figure 2). The quadrotor
is equipped with a PX4 flight controller, a VOXL 2® onboard
computer with an Adreno 650 GPU for neural inference, and
a 12 MP RGB camera. The onboard closed-loop frequency is
8 Hz when running U-Net perception and classical controller.

Although our visual policy does not require the tracks to be
the same as in training or in FalconGym 2.0, for a fair sim-to-
real comparison, we arranged the hardware courses to mirror
the simulation layouts: Left-Turn, Random, and Moving. Due
to the small indoor arena and observability assumptions,
for Left-Turn and Random we cross only three gates and
reserve the fourth as a navigational waypoint to satisfy
the observability requirement. For Moving track, a human
operator slowly pulls the gate laterally at around 0.25m/s;
we disable forward velocity for safety reasons and evaluate
average lateral tracking error of the gate centroid as MGE.
We use a motion-capture (mocap) to log the quadrotor’s
poses and the moving gate’s trajectories. While we also use
mocap to implement the state-based controller baseline, it
is not used in FalconGym 2.0’s construction or in any of
the vision-based closed-loop. Real-world onboard views and
quadrotor trajectories are visualized in Figure 6.

Due to safety concerns, differing control modalities, and
limited onboard computation power, we do not run the

visual baselines on hardware. We evaluate the remaining
three policies with the same settings in FalconGym 2.0:
each policy is run on each track with 10 different initial
conditions, and then we report the SR and MGE in Table
II. Although both our visual-policy variants perform slightly
worse than in simulation, they maintain high success rates
(SR > 93%) across all tracks. The primary failure modes are
(i) perception errors where the U-Net confuses a background
ladder with a gate and (ii) latency limits from the 8 Hz closed
loop. We mark the Moving track results with * to indicate
lateral-tracking-only evaluation in hardware (no gate crossing
due to safety reasons), which most likely causes lower MGE
than the full crossing achieved in FalconGym 2.0. Consistent
with simulation and the UAV case study, PGR shows a
slight improvement over uniform sampling in SR and MGE.
And both our visual policy variants follow the state-based
controller performance closely in 3 tracks.

V. CONCLUSIONS

We introduced FalconGym 2.0 (code to be released
upon publication), a GSplat-based photorealistic simulation
framework that provides an Edit APl for programmatic
object transforms. Leveraging this editability, we proposed
a performance-guided refinement (PGR) algorithm that con-
centrates visual policy’s training on challenging tracks and
iteratively improves its performance. Across two case studies
(fixed-wing UAVs and quadrotors) with different dynamics
and environments, our visual policy generalizes to different
tracks, outperforms baselines by achieving 100% SR on un-
seen tracks in FalconGym 2.0 and showing better robustness
to gate-pose perturbations. Finally, we demonstrate zero-shot
sim-to-real transfer on a hardware quadrotor with 98.6% SR
over three tracks (70 gates).

In future work, we plan to: relax the observability as-
sumption to handle occluded gates; evaluate higher-speed
flights for the quadrotor case study; incorporate realistic
UAV dynamics to enable fixed-wing sim-to-real transfer; and
distill the perception and controller neural networks to deploy
the full two-network stack onboard.

REFERENCES

[1] J. Low, M. Adang, J. Yu, K. Nagami, and M. Schwager, “Sous
vide: Cooking visual drone navigation policies in a gaussian splatting
vacuum,” IEEE Robotics and Automation Letters (under review), 2024,
available on arXiv: https://arxiv.org/abs/2412.16346.

[2] B. Kerbl, G. Kopanas, T. Leimkiihler, and G. Drettakis, “3d gaussian
splatting for real-time radiance field rendering,” ACM Transactions
on Graphics, vol. 42, no. 4, July 2023. [Online]. Available:
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

[3] Y. Miao, W. Shen, and S. Mitra, “Falcongym: A photorealistic
simulation framework for zero-shot sim-to-real vision-based quadro-
tor navigation,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, Hangzhou, China, October 2025.

[4] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng, “Nerf: representing scenes as
neural radiance fields for view synthesis,” Commun. ACM,
vol. 65, no. 1, p. 99-106, Dec. 2021. [Online]. Available:
https://doi.org/10.1145/3503250

[5] 1. Geles, L. Bauersfeld, A. Romero, J. Xing, and D. Scaramuzza,
“Demonstrating agile flight from pixels without state estimation,” in
Robotics: Science and Systems XX, Delft, The Netherlands, July 15-
19, 2024, D. Kulic, G. Venture, K. E. Bekris, and E. Coronado, Eds.,
2024. [Online]. Available: https://doi.org/10.15607/RSS.2024.XX.082

[7]
[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Q. Chen, J. Sun, N. Gao, J. Low, T. Chen, and M. Schwager,
“Grad-nav: Efficiently learning visual drone navigation with gaussian
radiance fields and differentiable dynamics,” 2025. [Online]. Available:
https://arxiv.org/abs/2503.03984

P. Soviany, R. T. Ionescu, P. Rota, and N. Sebe, “Curriculum learning:
A survey,” 2022. [Online]. Available: https://arxiv.org/abs/2101.10382
A. Byravan, J. Humplik, L. Hasenclever, A. Brussee, F. Nori,
T. Haarnoja, B. Moran, S. Bohez, F. Sadeghi, B. Vujatovic,
and N. M. O. Heess, “Nerf2real: Sim2real transfer of
vision-guided bipedal motion skills using neural radiance
fields,” 2023 IEEE International Conference on Robotics and
Automation (ICRA), pp. 9362-9369, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:252815541

M. Torne, A. Simeonov, Z. Li, A. Chan, T. Chen, A. Gupta, and
P. Agrawal, “Reconciling reality through simulation: A real-to-sim-to-
real approach for robust manipulation,” Arxiv, 2024.

Z. Xie, Z. Liu, Z. Peng, W. Wu, and B. Zhou, “Vid2sim: Realistic
and interactive simulation from video for urban navigation,” Preprint,
2024.

S. Yang, W. Yu, J. Zeng, J. Lv, K. Ren, C. Lu, D. Lin, and J. Pang,
“Novel demonstration generation with gaussian splatting enables ro-
bust one-shot manipulation,” arXiv preprint arXiv:2504.13175, 2025.
O. Shorinwa, J. Tucker, A. Smith, A. Swann, T. Chen, R. Firoozi,
M. D. Kennedy, and M. Schwager, “Splat-mover: Multi-stage, open-
vocabulary robotic manipulation via editable gaussian splatting,” 2024.
R. Portelas, C. Colas, K. Hofmann, and P.-Y. Oudeyer, “Teacher
algorithms for curriculum learning of deep rl in continuously
parameterized environments,” in Proceedings of the Conference on
Robot Learning, ser. Proceedings of Machine Learning Research,
L. P. Kaelbling, D. Kragic, and K. Sugiura, Eds., vol. 100.
PMLR, 30 Oct-01 Nov 2020, pp. 835-853. [Online]. Available:
https://proceedings.mlr.press/v100/portelas20a.html

H. Wang, J. Xing, N. Messikommer, and D. Scaramuzza,
“Environment as policy: Learning to race in unseen tracks,”
2025. [Online]. Available: https://arxiv.org/abs/2410.22308

Y. Chen, Z. Chen, C. Zhang, F. Wang, X. Yang, Y. Wang, Z. Cai,
L. Yang, H. Liu, and G. Lin, “Gaussianeditor: Swift and controllable
3d editing with gaussian splatting,” 2023. [Online]. Available:
https://arxiv.org/abs/2311.14521

Y. Wang, X. Yi, Z. Wu, N. Zhao, L. Chen, and H. Zhang,
“View-consistent 3d editing with gaussian splatting,” 2025. [Online].
Available: https://arxiv.org/abs/2403.11868

C. Vachha and A. Haque, “Instruct-gs2gs: Editing 3d gaussian
splats with instructions,” 2024. [Online]. Available: https://instruct-
gs2gs.github.io/

J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,”
in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 4104-4113.

W. Kabsch, “A discussion of the solution for the best rotation
to relate two sets of vectors,” Acta Crystallographica Section A,
vol. 34, no. 5, pp. 827-828, Sept. 1976. [Online]. Available:
http://dx.doi.org/10.1107/S0567739478001680

M. Tancik, E. Weber, E. Ng, R. Li, B. Yi, J. Kerr, T. Wang,
A. Kiristoffersen, J. Austin, K. Salahi, A. Ahuja, D. McAllister,
and A. Kanazawa, “Nerfstudio: A modular framework for neural
radiance field development,” in ACM SIGGRAPH 2023 Conference
Proceedings, ser. SIGGRAPH °23, 2023.

M. Owen, R. W. Beard, and T. W. McLain, Implementing Dubins Air-
plane Paths on Fixed-Wing UAVs. Dordrecht: Springer Netherlands,
2015, pp. 1677-1701.

F. Sabatino, “Quadrotor control: modeling, nonlinear con-
trol design, and simulation,” 2015. [Online]. Available:
https://api.semanticscholar.org/CorpusID:61413561

O. Ronneberger, P. Fischer, and T. Brox, ‘“U-net: Convolutional
networks for biomedical image segmentation,” in Medical Image
Computing and Computer-Assisted Intervention — MICCAI 2015,
N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds. Springer
International Publishing, 2015, pp. 234-241.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
networks,” Commun. ACM, vol. 63, no. 11, p. 139-144, Oct. 2020.
[Online]. Available: https://doi.org/10.1145/3422622

K. Shimizu, Y. Ishizuka, and J. F. Bard, Min-Max Problem.
MA: Springer US, 1997, pp. 271-279.

Boston,

